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PREFACE

The practical problems brought about by the Great War have given

rise to theoretical problems.

In acoustics interest centers about the problem of the propagation

of sound in a nonhomogeneous moving medium, which is the nature of the

atmosphere and the water of seas and rivers_ as well as about prob-

lems concerning moving sources and sound receivers. These pro]_lems are

closely connected; they lie at the boundary between acoustics and hydro-

dynamics in the broad sense of the word.

11_ is precisely these aspects of acoustics that have been either

little developed theoretically and experimentally or are not very popular

among acoustics technicians. This is the circumstance that has provided

the occasion for the sppearance of this bookj which is devoted to the

theoretical basis of the acoustics of a moving nonhomogeneous medium.

Experiments are considered only to illustrate or confirm some theoretical

explanation or derivation.

As regards the choice of theoretical questions and their treatment,

the book does not in any way pretend to be complete. The choice of

material was to a considerable extent dictated by the author's own in-

vestigations, some of which were, previously published and others first

presented herein. Certain problems were not worked through to the end

but have merely been indicated. The author, nevertheless, included them

in the book_ on account of the creative interest which they may arouse

among investigators in the field of theoretical acoustics. The author

expresses his appreciation to N. N. Andreev and S. I. Rzhevkin, who were

acquainted with the manuscript of this book, for their useful advice and

comments, and also to L. D. Landau_ whose consultation made possible the

clarification of a number of problems.

Institute of Physics, USSR Academy of Sciences
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CHAPTERI

C_ ACOUSTICS EQUATIONS OF A NONHOMOCENEOUS MOVING MED!UM

i. Outline of Dynamics of a Compressible Fluid

The medium in which sou_ud is propagated, whether it is a gas, a

liquid, or a solid body, has an atomic structure. If, however, the fre-

quency of the sound vibrations is not too large_ this atomic character

of the medium may be ignored.

For a gas it may be shown (ref. i) that if f << l/T, where f is

the frequency of the vibrations and • the time taken to traverse the

free path between collisions, the gas may be considered as a dense medium

characterized by certain constants. This method of considering the prob-

lem is assumed in aerodynamics and in the theory of elasticity. Since

the atomic character of the medium is ignored, the phenomenon of the di_

persion of sound camnot, in all strictness, be taken into account. For-

tunately, in the majority of practical problems, the dispersion of sound

does not have great significance. For this reason, phenomena which require

consideration of the atomic nature of the medium wlll not be considered,

and the aerodynamic equations of a compressible gas will be used as the

basis of the theoretical analysis of the acoustics of a moving medium.

These equations are first considered without the assumption of any

specific restrictions for tho acoustics (such as large frequency and small

amplitude of vibrations). The equations of the dynamics of a compressible

gas express the three flmdamental laws of conservation: (i) conservation

of matter, (2) conservation of momentum, and (3) conservation of energy.-

In order to formulate these laws, a certain system of coordinates x, y,

and z_ fixed relative to the undisturbed medium_ is chosen. Further, t

is the time, v is the velocity of the gas in this system (Translator's

note: An arrow is used in the typescript to indicate that a symbol stands

for a vector), vI = Vx, v2 = Vy, and v3 = vz are the components of
along the x, y_ and z axes, respectively_ and 0 is the density of the

gas. In these notations_ the law of the conservation of matter, mathema-

tically expressed by the equation of continuity, assumes the form

_p
+ (P k) : o (i.i)
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where the summation is carried out for k = i, 2, and 5. The vector 0_
is the flow density vector of the substance. This equation states that
the change in amount of substance in any small volume is equal to the
flow of the substance through the surface enclosing this volume.

The vector p_ may be considered also as the vector of the momen-
tum density. The change of momentumin any small volume should be equal
to the momentwmtransported by the motion of the fluid through the sur-
face enclosing this volume plus the forco applied to the volume.

The momentumflow due to the transport of momentumis a tensor

with the components: PVlV k (i,k = 1_2,3). The assumption is made that
there are no volume forces. Hence the force applied to the volume is

equal to the resultant of the stresses applied to the surface of the

volume. The tensor of these stresses will be denoted by Tik and is

composed of the scalar pressure p and the viscous components Sik

Tlk = p • 51k - Sik (I.B)

where bik = i if i = k, and Blk = 0 if I / k.

When applied to a small volume, the law of the conservation of mo-
mentum can be written in the form

(Pvl)+ (']'ik* PVlVk) : o
(1.3)

I and k = i, 2, and 3 and again is summed for k : i, 2, and S. The

equation of the conservation of energy should express the fact that the

change in the total energy in a small volume, made up of the kinetic

energy and the internal energy of a unit volume of the gas, is equal to

the flow of the kinetic and internal energy through the surface enclosing

this volume, the heat flow through this surface plus the work performed

by the stresses acting on this volume. The part of the energy flow vec-

v2
tot due to the transport of the kinetic energy 0 __ and _he internal

2 vA

energy pE (E is the energy of ur_it mass of the gas) is (P 2.-7 + oE)VL

If the heat flow vector is denoted by S(S1,S2,S3) and the conservation

law is applied to a small volume,

P +pE vk+S

x_ k (viTik) : 0
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where the summation is for i and k = i; 2, and S. The last term gives

the work of the stresses on a unit volume. For an isotropic, homogeneous

liquid (or gas), the stresses Sik are connected with the deformations

Vlk according to the Newtonian relation I

Sii = 2_vii + 7 • div v; Sik = 2_ • Vik (1.s)

where b is the viscosity of the gas and Vik is the tensor of the
deformations

ll_V i _Vk_ (1.6)

The magnitude 7 can be written in the form 7 = _' -2_/3, whore

_' is the so-called second coefficient of viscosity (see ref. (i)).

With this coefficient_ account is taken of the conversion of the energy

of the macroscopic motion of a gas into the energy of the internal

degrees of freedom of the molecules (the rotation of the molecules), a

fact which is of appreciable significance only for ultrasonic frequencies.

For this reason, in the majority of cases the assumption may be made

that _' = 0 and y = -2_/3 (the value assumed in the theory of Stokes).

The flow of heat _ expressed in terms of the gradient of the

absolute temperature T is

Sk : X " _T . X = p CVX (1.7)

whore × is the coefficient of the heat conductivity of the gas and

cv is the specific heat of the gas at constant volume.

To the throe fundamental hydrodynamic equations, (i.i), (I.S), and

(1.4), the equation of state of the gas (or liquid) connecting the pres-

sure p, the density p, and the temperature T is added

p = z(p,T) (1.8)

Equations (i.i), (1.3_, and (1.4) permit a rational determination
of the flow of substance L_ the flow of momentum represented by the

Lphis form for Vik follows from the assumption of the isotropic

character and homogeneity of the gas or liquid if a linear relation is

assumed between the stress tensor Sik and the deformation tensor Vik.
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tensor Mik , and the flow of energy N_ which_ like the flow of substance_
can be written in vector form. This determination will be such that the
divergence of the flow, taken with inverse sign, is equal to the deriva-
tive with respect to the time of the density of the corresponding mag-
nitude. In this manner from equatiqn (i.i) for the flow of substance
(equal to the flow of momentum)the following is obtained:

Z = (1.9)

From equation (1.5), substitution of the value of

tlon (1.5), gives the tensor of the momentum flow

Mii - pv + P + 7 • div v - Sp vii

Sik from equa-

Mik = Pviv k - S_Vlk = Mki ; i i k (i.io)

where, as before, i and k = i, S, and 5.

The terms of the form Ova, Pviv k give the momentum flow due to

the transport of momentum by the motion of the fluid, and the terms

containing p, p_ and 7 give the flow of momentum due to the action

of the pressure forces and the viscous stresses.

Flnally_ from equation (1.4), substitution of Sik from equation

(1.5) yields the energy flow

+ 0 _ + _ + rot v X
N = P S

7 • divv • v (l.li)

The first term gives the energy flow due to the transport of energy

by the fluid, the second (_) gives the heat flow, and the term S P_

and the terms with p and 7 give the part of the energy flow due to

the work of the pressure forces and the viscous stresses.

The fundamental equations can also be written in vector from, by

substitution of the value of the tensor Tik from equations (1.2) and

(1.5) in equations (1.5) and (1.4). Equation (i.i) may, however, be as

_ + div(pT) = 0 (i.12)

SThe vector N = P _ + v, representing the flow of energy for

an ideal incompressible liquid_ is called the N. Umov vector (ref. 5).

_D

_D
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If use is made of (1.12) equation (1.3) can be written in the form

Oq
t_

Oq

p d-Z= - vp + _A_ + !_v ely v
dt 3

(1.13)

where V is the symbol for the gradient and A = _2/8x2 + 82/8y2 +

_2/_z2 = q2. The magnitude d_/dt is the total derivative of the velo-

city with respect to time and is equal to

_v' _v - 3v v2
= _-_ + (v,v)v ' = _-_ + V _- + [rot v X v] (i.14)

The energy equation (eq. (1.4)), with the aid of equation (1.12), assumes
the form

p d__E= k- AT + Q - p • div
dt

(i.15)

d_ _ (?,v)E
d-_= _Y+ (i.15')

where Q is the dissipative function

3

Q = L" Slk " vlk

i,k=l

If this equation is divided by

change of energy of unit mass dE/dt

the amount of heat divided by the work of the viscous forces

the work of the pressure forces (-P div V/O).

(i.16)

P, it may be interpreted so that a

is equal to the heat flow kAT/p,

Q/p, and

This equation may also be interpreted in terms of thermodynamics.

The first law of thermodynamics for unit mass of substance yields

dE = TdS - p dV (i.17)

where E is the energy of unit mass; S, its entropy; p, the pressure,
and V, the specific volume (V = l/P). Thus

dE dS dV = T dS + p d0

dt - T • d-T- p d-_ d-_ p-_ d-_
(i.18)
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On the other hand,

dp 8p (V,V) p p div_- = _l + = _ . (i.19)

so that

div v .p_ dP (1.20)P " p - 2 "d-l
P

For adiabatic processes

dE p dp
-- (i .21)

dt p2 dt

from which

E = / dp _ £ (1.22)
P p

The magnitude

w=E+P= SdP
P p

(1.23)

is termed the heat function. If the process is nonadiabatic, equation

(1.18) holds. From equations (1.15) and (1.18) the following is ob-

tained:

T dS _ X AT + _ (1.24)
dt p p

The magnitude T(dS/dt) is the increase of heat of unit mass of

the gas, which is determined exclusively by the heat conductivity and

the work of the friction forces. If k and _ are neglected since the

effects produced by them in the over-all energy balance are usually small

corrections, the following results:

dS aS
+ (_, vs) = o (1._5)

dt - dt

that is, the adiabatic motion of the fluid. The Bernoulli theorem holds
for this motion if it is also irrotatio) al (rot v := 0).

If

:O
bO

=- v® (l.2g)
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where _ is the velocity potential, from equations (1.13) and (1.14)

v - =+ (v._) =- _ (1.27)

and since, on the basis of equation (1.23), p/P : V--W,integration of

equation (1.27) gives

P

w : y dpp--YC-[_¢z (v+)2 (i._7')

If the compressibility of the fluid is neglected,

w = _- + constant (1.28)
P0

so that

_ PO
P = 0 0 _ - _- (re) ? + constant (1.29)

and in the case of steady flows (_/(_t = 0)

p = constant - 00 P0v2
2 (V_)2 = constant - 2 (1.3o)

Because the entropy remains constant during the motion for an ideal

fluid (_ = _ = 0) introduction of the variables p and S in the

equation of state, equation (i.8), in place of the variables p and T,

is expedient since with such a choice of variables one of the variables

(S) remains constant, whereas the temperature T varies even for an

ideal fluid (for adiabatic compressions and expansions of the fluid).

The following may be written in place of equation (1.8)

p : z'(o,s) (1.8')

2. Equations of Acoustics in Absence of Wind

The equations which determine the propagation of sound in a motion-

less medium can now be considered. The vibrations of the medium are

called sonic vibrations or simply sound if the amplitude of the vibra-

tions is so small that it is possible to neglect all the changes in state

of the gas in any small volume are produced in it by the transport

(convection) of mass, momentum_ and energy. This situation is the con-

dition of linearitj of the vibrations. Further_ these vibrations are
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assumedto occur with frequencies in the hearing range (the region of
classical acoustics) or near this range (infra and ultra sound). Mathe-
matically the above assumption reduces to the neglect of the terms in
the aerodynamic equations of a compressible gas which contain second
powers or the products of small magnitudes which determine the deviations
of the state of the gas from equilibrium. Where _ is the deviation of
the pressure from the equilibrium value PO, P is set equal to Po _ _'
P = PO+ 5 where PO is the value of the density for P : P0 and

T = TO; and finally v : is a small velocity). Similarly for the
temperature; entropy, and energy;

T = TO + e

S =So + a

E=E0+

In placeof equations (1.12) and (l.iS); the following is obtained:

P0 :- _ +_ ' a_ +g_v dlv_ (1.31)

+ Po div _ --0 (I.3Z)

The equation of state of the gas, for an ideal gas in the variables

p and T is

p :p . _ (I._3)

where r

and S

is the gas constant for unit mass; and in the variables p

S-S O

P0
P=P7 " _" e

C
V (1.34)

where cv is the specific heat at constant volume (cv = r/(7-1)), and

= __Cp/Cv is the ratio of the specific heats at constant pressure and7

conszan_ volume. For small changes of state the following Is obtained

from equation (1.54):

PO P0
= 7 P0 5 + -- a + .... c25 + ha + ...; h =

P0 Cv Cv

_O
_0
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For o = 0, only the first term representing small changes in pres-

sure for small adiabatic compression or expansion of the gas remains.

The magnitude

c ° ll.3 )
V Pc

is the adiabatic velocity of sound. The second term gives the change in

pressure produced by the addition or decrease of heat. The changes of

entropy o obey equation (1.24) which is written by neglecting magni-

tudes of the second order of smallness as follows:

TO _o _ A0; _ p (1.36)
- PO : Cv_

The changes in temperature e may be expressed in terms of the

changes in density and entropy. From equation (1.17)

P

The energy of an ideal gas is equal to

a !

p P0 P7 Cv- e (1.38)
E = CvT = (7 - 1)p 007 7 - 1

from which _E/_S = 8E/8o is obtained in the form

PO p7-1

- 1)cv

O' C v• e = _ (1.37')
t_ - l_pcv

that is, for small values of P and S

P0
e - P0 5 + o + "'' (1.39)

v Po( -l)Cv

where the first term represents the change in temperature during adiabatic

compression or expansion of the gas and the second term represents the

change in temperature due to the change in entropy of the gas.

Substitution in equation (1.56) yields

_° (_ - l)Cv (1.4o)
_t - ×Aa + ×IAS; ×i = x PO
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Equations (1.31), (1.52), and (1.40) together with the equation of
state (1.54) determine the propagation of sound in a motionless medium
whenaccount is taken of the viscosity and heat conductivity of the
medium.

The effects arising from the presence of viscosity and heat con-
ductivity reduce, in a first approximation, to the absorption of the
sound by the medium. This absorption is generally not large and its
magnitude for a plane wave can be determined without difficulty. If its
direction of propaga%ion is along the ox axis, the frequency of the
sound equals 60, and the wave numbervector is equal to k_

= _oei(60t-k'x)

: 50el (60t-k'x)
(1.41)

o : Ooei(60t-k'x)

where _0' 80' aO are the amplitudes of vibration of the corresponding

magnitudes. Substitutlon of equations (1.41) in equations (i.31), (1.32),
and (1.40) yields

4
i60_o_o : ik(c25o + h%) - _ _k2_o (i.31')

im5 o - ikPo_ o = 0 (i.52')

i60o0 = - ×k2o 0 - Xlk25 0 (1.40')

Elimination of the amplitudes gives the relation between k and

k • I C2 kPo h • Xlk2 1
_ + 4

60 (i60 + xk 2) _ i_k2
L ]

If k is set equal to 60/c - i% where _ is the coefficient of

damping of the wave_ the velocity of propagation C' in the first

approximation is equal to C, and the damping coefficient _ is equal
to

(1.42)

60

to)

to
tO

(a _ • 2 +___ l- -- (143)
3 Oc 3 20 c5 "
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where a2 = p0/O0 is the square of the isothermal velocity of sound.
For air a = i,i 10-13f2cm-I, where f = _/Z_ is the frequency of
sound in Hz (i Hertz = i cycle/sac). Hence in manycases the effect
of the viscosity and heat conductivity maybe neglected or their effect
taken into account by introduction of the absorption coefficient in the
final results. The smallness of the effect of viscosity and heat con-
ductivity of the air on the propagation of sound Is determined not only
by the smallness of the coefficients _ and × but also by the small-
ness of the gradients of all magnitudes which vary in the sound
propagation.

Equations (1.31) and (1.40) showthat these gradients enter the
equation in the form of second derivatives of _ _ and so forth
(for example, _ and _Ao). In the propagation of a wave In free
space these derivatives are in order of magnitude equal to _/k2, _/k2,
•.._ and so forth_ and becomeappreciable only for very short wave
lengths (as the final equation for the absorption coefficient a shows
since a increases proportionally to the square of the frequency.

Near the boundaries of solid or fluid bodies which maybe considered
as stationary_ the losses by viscosity and heat conductivity increase.
In these cases sharper changesof state of the gas in space occur and
the second derivatives of _, % and _ are determined not by the length
of the wave but either by the dimensions of the body _ so that
_ _ _/_2 and Ao _ a/Z2 or by the '_atural" length d' = _ (this
length is in addition to the lengths k and I_ and is determined from
dimensional considerations), where _ is the kinematic viscosity
(v = _/p), or by the length d" = _x--_. In these cases the order of the
ma_itudes is given by A_ _ _/d_ and d_ _ _/d2.

In general, the losses by viscosity and heat conductivity near the
bour.dar_ of a solid or fluid body are determined by the least of the

' d").three lengths X, Z, and d (d ,

Despite the increase in the losses near walls and stationary boun-

daries, the losses remain small and can be considered a correction to

the motion which occurs without losses (except for the case of the propa-

gation of sound in very narrow channels). An example of the approximate

computation of the effects of viscosity and heat conductivity may be

found in the work of the author (ref. 4).

In addition to the absorption of sound associated with the heat

conductivity and the viscosity of the medium still another molecular

absorption of sound exists which was discovered by V. Knudsen (ref. 5)

and explained by G. Kneser (ref. 6). The physical character of this

absorption lies In the conversion of the energy of the sound vibrations

into the energy of inner molecular motion (energy of rotation of the
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molecules). This absorption likewise increases with the frequency and
is of special significance for the ultrasonic range.

As the consideration of these problems deviates from the present
subject, discussion is limited to the references given.

In all those cases where the losses of the sound energy are not of
interest, the viscosity and heat conductivity of the air maybe ignored.
If k and _ are set equal to 0 in equations (1.3') and (1.40), o = O_
that is_ adiabatic propagation of sound is obtained and the equations
describing this propagation assumethe form

PO -_ = - V_ (1.44)

+ PO " div _ : 0 (1.45)

= c25 (1.46)

These equations may be solved with the aid of the single function

which is termed the velocity potential (or simply the potential).

The first three equations (1.44) are satisfied by setting

: % (1.47)

= - V¢

The wave equation for the potential from equations (1.46) and (1.45) is

obtained:

i b2m
- o (1.4s)

which, in the presence of bodies, must be solved with the boundary con-
dition

_'_J = <On (on the surface
of the body)

k_Jm/ (1.49)

where _/_n is the derivative along the normal to the surface of the

body and _On is the normal velocity of the surface of the body assumed
as small. In place of equation (1.49), for stationary bodies

Oil
(on the surface of the body)

(1.49,)

,"0
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For a unique solution of the problem of the sonic field described

by equation (1.48) the initial conditions for ¢ and _/_t must be

formulated in addition to the boundary conditions of equations (1.49)

or (1.49').

Ln
Cn

_n

3. Energy and Energy Flow in Acoustics

For linear acoustics all magnitudes referring to the sound are

computed with an accuracy up to the first degree of the amplitude A,

which may, for example_ be the amplitude of a piston which excltes sound

vibrations. Achievement of more accurate solutions of the equations of

hydrodynamics wlll yield the" succeeding approximation containing terms

proportional to A 2, and so forth (when account is taken of nonlinear

phenomena). For the pressure p, the density P, and the velocity of

motion v, the following series is written:

P = P0 + _i + _2 + "'-

P = PO + 51 + B2 + "'"

= v0 + gl + + ... (1.50)

The magnitudes P0' P0' and _0 refer to the motion undisturbed by the

sound; the magnitudes ×I' 51' and _i are proportional to A; the

magnitudes _2_ 52, and _2 are proportional to A 2, and so forth. The

energy and energy flow contain the squares of the magnitudes 51, _I,

and _I" For this reason caution must be used when the energy and energy
flow are computed in linear acoustics, as was pointed out by I.

Bronshtein and B. Konstantinov (ref. 7) and also by N. N. Andreev (ref.

8)_ since these magnit_ides_ being of the order of A 2, may also contain

the first degrees of the succeeding approximations _2, 82, and _2
while their contribution will be of the same order as the contribution

from the squares of _i' 81, and _i"

The general expression for the ener_j density of a.compressible
medium is

U - pv2 + PE (I.SI)
2

where E is the internal energy of unit mass of the medium The energy

flow N, computed on the basis of equation (i.ii) with the viscosity and

heat conductivity neglected, is equal to

N = Uv + pv (1.52)
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From the law of the conservation of energy,

+ dlv N = 0 (1.S3)

This equation is one of the fundamental equations of hydrodynamics,

that is_ equation (1.4) for the case of an ideal fluid (_ = k = 7 = 0).

For an ideal gas DE = P/(7 - i) (equation (1.58)); hence

N - pv2 _ + _ (1.5_')
2 7 - i

For acoustics the initial medium is considered motionless (v% = 0)

The energy of the sound z2 = U 2 - 00 • E 0 and the flow of sonic energy

N 2 is obtained with an accuracy up to the order of magnitude A 2. Terms

of the order of A S rejected,

-%-+ dlv N2 = o (1.ss)

where

z2 = --_--+ 7 - i

7p 0 -+ -, 7_i_i
N2 - (_i - _2) + _ (1.54)

7-1 7- i

Inasmuch as

P = PO + (51 + 52) + _- 52 + ...
o \dPB)0

1(7 22
= P0 + c2(51 + 52) + _ - i)c051 = PO + _i + _2 + "'"

(l.ss)

(c_ = (dp/do) = 7 " Po/Po is the square of the adiabatic velocity) and

_i = c_ I, equation (1.54) may be rewritten in the form (1.54')

7 - 1_2 2 + 2Poe _ + (51 + 52)

c2p 0 _ 7_i_ 1
N_ - (_l _ _z) +

7- ]- ' 7- i
(i.54')

:0
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For a homogeneous medium at rest (Vo = 0, cO =" constant, and p0 :

constant), a new form of the conservation law follows from equation

(1.53) in which the energy of the sound and its flow are expressed only

in terms of the magnitudes characteristic of linear acoustics (_i. 51 ,

and _]), not containing the second approximations (_2, 2, and _2)"

The equation of continuity expressing the law of the conservation of

matter (equation (1.12)), when written with an accuracy up to terms of

the order of A2, is

_(_i+ 82)
_t + P0 dlv (_i + _2 ) + div (51_i) : 0 (l.S6)

This equation Is multiplied by c_/(7 - i) and the result is subtracted

from equation (i.53). Inasmuch as 51 = _i/cl2, equation (1.54) yields

_E I -_

+ div NI : 0 (I.ST)

where

_i - 2 + 2
2PoC 0

NI = _i (i.58)

The new expressions obtained for the energy of sound and the energy flow

E1 are precisely those which are applied in acoustics. In particular,

if the potential ¢ (El = - v_, _i = PO (_¢/_t)' see equation (1.47)) of

the sound wave is introduced, then

2PoC 0

_i = - PO _t V¢
(i.59)

If, as is often the case, the potential ¢ depends harmonically on the

time and is given in complex form (¢ is proportional to ei_t), the mean

energy In time and the mean flow in time are equal to

2 2
4PoC 0

NI - 4 _ m (l.6O)
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where the sign * lndlcates that the conjugate complex magnitude should
be taken.

The expressions for the energy and energy flow equations_ (1.54)

and (1.58), are physically equivalent because the medium is supposedly

homogeneous (in a nonhomogeneous medium equations (1.59) are not valid).

In order to show the equivalence of the two forms of the conservation

laws, one of which is a consequence of the other (under the given con-

ditions) the radiation of sound is considered. In figure 1 is shown a

sound source Q (solid body), a certain part of whose surface a exe-

cutes vibrations which excite sound waves. If the vibration started at

the time instant t = 0_ at the moment t the surface of the wave front

will be the surface F (see fig. 1). The entire space between this

surface and the source Q wlll be filled with energy radiated by the

sound. Wlth an arbitrary control surface S enclosing the sound source,

the conservation theorem (1.53) is applied in integral form to the

volume V included between S and Q. In order to do this_ equation

(1.53) must be integrated over the volume and4then , the theorem of Gauss

is used in transforming the integral of div N 2 to a surface integral.
This integral will consist of the integral over the surface S and the

surface of the source Q. Although some inconvenience is caused because

part of this surface is movable (a)_ It can easily be circumvented by

the consideration that the flow of energy through the surface of the

source must simply be equal to the source W2.

From equation (1.53) the following equation is obtained:

_O

t_ + t(_, - i) (<i + _2) + (7 -_ I) (_i_I)n do = W8 (i.61)

where n denotes the projection of _ on the normal to the surface

E2 =_/ E2dv is the total energy of the sonic field enclosed within

S; and the strength of the source Q is evidently equal to

S,

= 0( + {1)v + do (1.6Z)

where _ denotes the projection on the normal to the surface a. If

the control surface is passed outside the sonic field (for example_ out-

side the wave front F, but infinitely near it)_ from equation (1.61)

is obtained

dE2 _0 tdt - W2; E2 = W2dt (1.83)
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that is, the total radiated energy E2 is equal to the work of the
source Q. Onthe other hand_ if the second form of the conservation
law (eq. (1.18)) is treated in the samemanner, the following equation
results:

Cq
Ca

Oq

dE I <tdt - W2; E1 = W2dt (1.63')

from which it follows that E 1 must be equal to E 2.

From equations (1.54') and (1.58),

C2fvE2 E1 - - 1 (51 + 52)dr (l.S4)

where the integration is over the volume V. The integrally (61 + 52)dv

is the total change of mass of gas in the volume occupied by the sonic

field. This change is equal to zero because the substance could not flow

out beyond the limits of the wave front; hence E 1 = E 2. If the integral

over the time period in equations (1.63) or (1.63') is taken over the

entire number of periods of vibration of the source and if the fact is
t

taken into account that in this case do P0 (_i + _2)v dt is

equal to zero (since this integral is equal to the algebraically assumed

path of a surface element d5 of the source Q in the direction along
the normal to 5 for a complete number of periods)_ and if the energy

obtained over part of a period is neglected,

_0 t _ -*E 2 = E 1 : dt dO(_l<l) v = (_16)_ ot
(l.ss)

where (_l_)V is the mean value of the energy flow vector.

Both forms of the conservation law are identical when expressed in

integral form. Despite th_ complete legitimacy and generality of the

expressions for E2 and N 2 containing the elements of nonlinear

acoustics, in linear acoustics it is entirely possible and more rational

_nder the conditions of a homogeneous and stationary medium to use equa-

tions (1.58) for the energy and its flow.

The equivalence of equations (1.54) and (1.58) no longer holds if

the medium is nonhomogeneous and in motion. The equations for E 2 and
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_2 can easily be generalized to the case of a moving medium. Rather
complicated expressions are obtained which will not be considered
herein.

As will be shownin section 7, it is essential that relatively simple
expres_lons are obtained for the energy density of sound E and energy
flow N resembling expressions (1.58) and containing magnitudes of only
linear acoustics in the approximation of geometrical acoustics in a non-
homogeneousand moving medium.

4. Propagation of Sound in a NonhomogeneousMoving Medium

In the presence of air motion the acoustical phenomenabecomemore
complicated. Generally, separation of the acoustical phenomena,In the
narrow sense of the word, from the doubly nonlinear processes taking
place In a moving mediumis not possible. Thus, for example_ the flow,
pulsating in velocity if the frequency of these pulsations Is sufficiently
large, acts on the microphone or ear located in It (not considering
phenomenaconnected wlth vortex formation on the microphone body itself,
see section 28) as a sound of corresponding frequency although the velo-
city of propagation of these pulsations has nothing in commonwith the
velocity of sound.

The relation between the pressure of these pulsations and their
velocity is nonlinear and also differs fundamentally from the relation
between the pressure in a sound wave and the velocity of sound vibrations.
Finally, the variable nonstatlonary flow itself can be a source of sound.
Phenomenaof this klnd wlll be considered later but this section wlll be
concerned exclusively wlth the problem of the propagation of sound. In
order for it to be possible to separate the sound propagated in the
mediumfrom the acoustic phenomenaarising In the samemediumonly as a
result of Its motlon_ this motion will be assumedto be "soundless",
that is_ that the motions in the flow are sufficiently slow so that

1 (1.66)

where • Is the time during which appreciable changes occur in the

state of the flow (for example, the period of pulsations of the flow

velocity) and f is the frequency of the sound propagated through the

medium. Thls condition requires additional explanations. It depends on

the choice of the system of coordinates to which the motion of the flow

is referred.

In fact, a general translational motion of the medium has no signi-

ficance since it simply leads to a transfer of the sound wave. For thls

reason, it is sufficient that equation (1.66) be satisfied in some one

system of the uniformly moving systems of coordinates.

_9
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If, for example, a flow is considered in which the propagation of

the velocities is stationary (that is, does not depend on the time, but

the velocity of the flow periodically changes in space with the period

Z), then for this flow _ = -. If this flow is considered from the point

of vlew of an observer moving with velocity u, the flow will appear to

him nonstationary, the period of the velocity pulsations being equal to

_' : _/u.

The phenomenon of the propagation of sound in the two systems of

coordinates wlll differ only in the transport of the sound wave as a

whole with velocity u. Since for the present interest is confined to

the propagation of sound, this difference, which can easily be taken into

account, is not essential.

When the statement of the problem is broadened and a sound receiver

is considered, entirely different results are obtained in these two

reference systems. In the first system, in which the flow is stationary,

the sound receiver would assume only one frequency f_ the frequency of

sound propagation. In the second system, in addition to this frequency 3

f the receiver would also receive the frequency of pulsations In the

flow, that is, f' = 1/_' = u/_ and the combined frequencies fn = f ±

nf' n = 1,2,3,
, .o.

In the following, condition (1.66) is assumed satisfied in any of

the possible reference systems. The effect of the flow on the sound

propagation will then express itself in two ways: In the first place,

the sound will be "carried away" by the flow and, in the second place,

it will be dissipated in the nonhomogeneities of thls flow.

In the derivation of the fundamental equations of the acoustics of

a moving medium, the effect of the viscosity and heat conductivity of the

medium on the sound propagation is ignored. This effect, which can more

conveniently be taken into account as a correction, leads to the previous-

ly considered absorption of sound. The part played by these factors,

which determine irreversible processes in hydrodynamics, may be very

appreciable in the formation of the initial state of the medium In which

sound is propagated. No less essential in this connection is the effect

of the force of gravity. Hence the theory of the propagation of sound

in a nonhomogeneous and moving medium must have as its basis the general

equations of motion of a compressible fluid.

According to equations (1.12), (1.13), and (1.24), these equations

are

div(pv) 0_+ =
(1.67)

3Actually it changes somewhat because of the Doppler effect; see

section 5.
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3_ -_ ! - _ + _ + _A_ + _ v div v
_:E+ ot v, +V 2 P (1.68)

_S AT Q
_+ (_,vs) _ -- (1.69)=p " T +p-T

where v = _/p is the kinematic viscosity of the medium. Further# equa-

tion (1.15) was supplemented by the term +g, which represents the effect

of the force of gravity. The vector g is the vector of the acceleration

of gravity directed always toward the center of the earth. Thus P •

is the force of gravity acting on unit volume of the fluid.

Now let sound be propagated in a medium the state of which is des-
cribed b_ the magnitudes v, p, p, and S. The initial state of the
medium (v, p, p, and S) is considered stable and the sound is considered

as a small vibration. All the previously mentioned magnitudes will then

receive small increments: _, _, 5, and a, respectively, where _ will

be the velocity of the sound vibrations; _, the pressure of the sound;

5, the change in density of the medium; and a, its change of entropy

occuring on passing through a sound wave.

In order to obtain the equations for the elements of the so_nd wave
in equations (i.67)# (i.68)_ and (1.69)_ v is replaced by v + _, p_ by

p + _, P, by p + 5, and S, by S + a; by restriction to a lineag approxi-

mation_ terms of higher order relative to the small magnitudes _, _, 5,

and _ are rejected. Moreover_ as has Just been mentioned, the irre-

versible processes taking place during the sound propagation are ignored,

which means that in the linear equations for _, _, 5_ and a the terms

proportional to the viscosity (_ or v) and the heat conductivity

are rejected. On the basis of equations (1.16) and (i.5), the heat Q

dissipated in the fluid likewise belongs to the number of magnitudes pro-

portional to _. By the method indiaated,

+ [rot _, 7] + Cr ot <, _] + V(V, _) = V__
- P + p2

(l.v0)

+ (v, VB) + (_, VP) + P " div _ + 5 div v = 0 (1.vl)

_o (7,vo)+ ([,vs) o (1.7e)
_+

The equation of state, which is given in the variables p and S_

is still to be added to these equations. For small changes of pressure

_ and in exactly the same manner as in the preceding section the follow-

ing is obtained:

(1.73)

bO
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O_

Equations (1.70), (1.71), (1.72), and (1.73) are the fundamental

equations of acoustics for a homogeneous moving medium (eq. (1.74)).

Their differences from those known in the literature lie in the fact

that they are true in a medilnn the entropy of which varies from point to

point (VS _ O) and in a flow in which vortices may exist (rot _ _ 0).

The approximations made in these equations, in addition to linearity,

consist in the fact that no account is taken of the irreversible processes

in the sound wave so that the sound wave is considered an adiabatic pro-

cess. This fact is also expressed by equation (1.72). In fact, it fol-

lows from this equation that d(S + _)/dt = 0_ that is_ the entropy of a

given amount of substance remains unchanged with the passage of a sound

wave. The entropy of the substance at a given point of space may vary;

0.

In this sense the sound wave is not isentropic. The linear charac-

ter of the equations requires that a small disturbance remain small in

the course of time (stability of the initial state). Hence it is not

possible with the aid of these equtions to describe, for example, such

interesting phenomena as the "sensitive flame" of a gas burner, the

height of which changes sharply under the action of a sound w_ve.

In other respects the equations are entirely general and it is quite

immaterial in what manner the initial state of the medium was formed. In

bringing about this state, the force of gravity, the heat conductivity,

and the energy flow from the outside (for example, the sun's heat) may

be of considerable significance. The effect of all these factors on the

sound propagation is taken into account in equations (i.70), (i.71),

(1.72), and (1.73) through the magnitudes v, p, D, and S character-

izing the initial medium.

The equation p = z(O, S) and equation (1.73) are valid only for a

single-component medium. In general, the pressure may depend not only

on p and S but also on the concentration of the various components.

In a complex medium it is necessary to take into account the diffusion

of the various components. The corresponding uncomplicated generaliza-

tion of equations (1.70) to (1.73) will be made in section 13, where the

case of sea salt water is considered.

The choice of the thermodynamic variables O and S that has been

made herein is very convenient for general theoretical considerations.

For final numerical computations, however, the variables p and T are

more convenient. For this reason_ formulas are given expressing the mag-

nitudes (Sp/_S) o and 9S entering the equations through the variables

p and T.

vs : ( S/ T)pVT+ ( S/ p)Tvp
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on the basis of the known thermodynamic relations (SS/_T)p = Cp/T (Cpf is

specific heat at constant pressure), (_3/8p) T =- (SV/_T)p =- _p/P I_p

is the coefficient of volume expansion and _p : _ l(_)p). \

Hence

8
vs = - • (l.74)

T p

Further,

= = -(_p/_p)T(_P/_Fl')p(_p/_2)S (_p/_S)p(_S/_q))p and (_p/_I_)p

The magnitude

where c2 is the square of the adiabatic velocity of sound and

((_S/_)p : Cp/T. Thus

(_) = Pc 2p Cp 6pT (1.75)

On the basis of equations (1.74) and (1.75) and the medium (c2,Cp,_p)
and its state (p and T as functions of the coordinates) VS and

(Sp/_S)p can easily be found.

t

The system of fundamental equations (1.70) to (1.73)# even if, with

the aid of equation (1.73)# one variable is eliminated (e.q., 5), contains

five unknowns and is therefore very complicated.

Nevertheless, if a complete wave picture of the propagation of sound

is to be obtained, these equations cannot be avoided. The main complica-

tion lies in the fact that, because the pressure in the medium is a

function of two variables (p and T or, preferably P and S), then

even in a medium at rest where not only vortices of the flow are absent

but where, in general, there is no flow, the right side of equation (1.70)

will not be a complete differential of some function and therefore the

sound will be vortical (rot _ / 0). Considerable simplifications are

obtained when the changes in p, D# and S are small over the length of

the sound wave. Geometrical acoustics are considered in greater detail

in the next chapter.

_O

_D
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For the present, certain special cases of the general system which

are not reduced to the approximations of geometrical axoustics are

considered.

The most important special case will be the one for which the

initial flow is not vortical (rot _v = 0) and the entropy of the medium

is constant (VS = 0).

Under these conditions the pressure in the medium is a function

only of the density of the medium so that VP = c2Vp. From equation

(1.72) it follows that for VS = O, _ = 0 so that the sound will be

propagated isentropically. Then

= c25

If the potential of the-sound pressure is introduced

n - _ (1.76)
P

the right side of equation (1.70) will be equal to -YR. Therefore the

velocity potential of the sound vibrations e can also be introduced

: -w (1.77)

The sound will be nonvortical in this case. From equation (1.70)

o - n : + (_, re) : d__ (l.78)
dt

Substitution in equation (1.71) of the magnitude n (for which

_[j/at = (c2/p) (_5/_t), Vll = 5 • _(c2/o) + (c2/0) " _5) in place of

yields the following equation for _:

a__ 02 A_+ (v%, v_) + _ (_, vlog °2) (1 79)
dt 2 = dt "

where HO is the potential of pressure (heat function) of the initial
flow

no : / _o (l.8O)

Equation (1.79) was derived by N. N. Andreev and I. G. Rusakov (ref. i0)

without the last term, which was erroneously omitted. This equation

exhaustively describes the propagation of sound in a medium in which the

entropy is constant.
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A. M. Obukhov(ref. ii) gives an equation which permits an approxi-
mate consideration of the presence of vortlcity of the flow but never-
theless makesuse of one function, the "quasipotentlal" 4. This quasi-
potential is introduced by the equation

= - V_ +Jt [rot _ X Veldt (1.81)

The quasipotential may be introduced only for sufficiently small vorti-

city of the initial flow, that is, the assumption must be made that

= I r°t _I << _ (1.82)

where _ is the cyclical frequency of the sound.

Moreover the assumption is made that v/c)<< i, so that the initialflow may be taken as incompressible (dlv _ = 0 . Finally the pressure

of the medium is assumed as a function of the density of the medium only.

Since 8p/Sp is considered by A. M. Obukhov as the adiabatic velocity

of sound, this implies the assumption that the entropy of the medium is

constant. In connection with this assumption, the question arises as to

what extent the assumptions of the presence of vorticity (rot _ _ 0) and

the constancy of the entropy (V-S = 0) generally apply together. The

possibility is not excluded_ however, that the influence of the vortices

on the sound propagation is more effective than the influence of an en-

tropy gradient. These hypotheses are assumed satisfied and _ is sub-

stituted from equation (1.S1) into equation (1.70) and, since _S = 0,

the right side of equation (1.70) will again be = - _q. After simple

reductions, the equation, which was found previously, is obtained.

n =_- =a-i
p dt (l.83)

In this case, however_ it is true only approximately with an accuracy to
V/c

Expressing 5 in equation (1.71) in terms of _ and _ gives the
equation of A. M. Obukhov:

_-_ c2A¢ + (_u0, re) + d__(7, v log c2
dt 2 = dt ) +

c2yt ( f 0
(V_, A_)dt- V_O, [rot _, V_]d (1.84)
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This equation holds with an accuracy up to _I_, _/_ V____ (k = _/c). The
k$_

magnitude AT = - rot rot v. In this equation, the terms of order v2/c 2

can not be taken into account because in the approximations the assumption

was made that v/c << 1.4

O_

O_

!
D
D

5. Equation for Propagation of Sound in Constant Flow

In many cases the v_locity of the flow v may be suitably separated

into the mean velocity V and the fluctuating velocity u. The effect

of these two components of velocity on the sound propagatiom may be dif-

ferent. The mean velocity of flow produces the "drift" of the sound

wave while the second variable part of the flow velocity leads to the

dissipation of the sound wave. This phenomenon will be considered in

more detail later. For the present, attention is concentrated on the

effect of the mean flow velocity and the equations are considered for

the sound propagation_ with the variable part of the flow velocity u

ignored. The solution obtained under these conditions is of interest

not only as a first step toward the approximate solution of the complete

problem with the velocity fluctuations being considered but is of value

in itself, especially for the theory of a moving sound source.

In order to obtain an equation for the propagation of sound in a

homogeneous forward moving medium, it is sufficient to put VII0 = 0

and Vlog c2 = 0 in equation (1.79). Expansion of the total derivative

with respect to time [d2)/dt = _/et + (v, V) (8)/_t + (v,V_) yields

1 _2_ z ,v _ (v,_)(vv_) = o (1.85)
A_- c2 6t 2 c2

If the X-axis is taken in the direction of the mean velocity and

is set equal to _/c,

bx 2 _y2 dz 2 c 2 _t.2 c _ = 0

For the system of coordinates

the stream _ = x - Vt, _ = y, and

into the usual wave equation

_, _, and _ moving together with

= z, equation (1.85') is transformed

+ + c2 - o (1.86)

4The result of A. M. Obukhov is probably more rigorous and could

have successively been obtained as the second approximation of geometri-

cal acoustics (see section 7).
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as expected, since in this system of coordinates the mediumIs at rest.
Certain important solutions of equation (1.85') are now available.

A plane sound wave is first considered. In the system of coordin-
ates _, _, and _ at rest relative to the air (hence for an observer
moving with the stream), this wave has the potential

: Ae _i _ + _2_ + _3___- c
; o_ +_ +_ = i

(1.87)

where _i' cu2' and c_3 are the direction cosines of the normal to the

surface of the wave; _ the frequency of the oscillations; and _,)thevelocity of sound. Equation (1.87) is a solution of equation (1.86 .

According to the previously mentioned transformation, the solution of

equation (1.85') is immediately obtained if _ Is replaced in equation

(1.87) by x - vt, _ by y, and _ by z

_o

i [_'t - _ (_lX+c _2Y + _sz)]
_(x,y,z,t) = Ae (1.88)

where

o_' = _( I + Vc C_l) (1.89)

Thus the sound frequency in a stationary system of coordinates will not

be _ but _'.

This change of the frequency of the sound is the acoustical Doppler

effect. The effect has an exclusively kinematic origin; it depends only

on the choice of the system of coordinates. The entire difference in the

propagation of a plane wave in a moving medium as compared with a sta-

tionary one reduces to this kinematic effect.

Later the Doppler effect will be considered more fully; not only the
motion of the observer of the sound will be taken into account but also

the motion of the sound source itself, which at present does not enter

explicitly in the computation.

A second important form of the solutions of equation (1.85) Is pre-

sented by sound waves diverging from a certain small point source of

sound (or, on the contrary, converging to it; In the latter case a sound

"sink" is being dealt with, which is a very artificial but mathematically

useful concept).

The mathematical expression for the potential of such waves is a

generalization of the potential of spherical waves for a medium at rest.
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This potential of spherical waves is a solution of equation (1.86),
having the form

c_

o

!
O
o

(r)
F t + c ; r : _/_2 + _]2 + _2×0:

r
(1.9o)

where F is an arbitrary function. The solution with the minus sign is

given by waves diverging from a sound source located at the origin of

coordinates (_ = _ = _ = 0) and the solution with the plus sign represents

the same waves converging to a sound sink at the origin of coordinates.

If F is a harmonic function, the following is obtained from equation

(1.90)

XO = e (1.90')
r

that is, a spherical harmonic wave with frequency _. In a moving medium

in which the propagation of sound is described by equation (1.85') in-

stead of solutions of the form of equation (1.90), the more general ex-

pression is obtained 5.

×= R*
(1.91)

where

R = Gx* &R* _/x z2, xR* = .2 + y2 + x* - (1.92)

With the substitution of X from equation (1.91) into equation (1.85), it

is not difficult to show that equation (1.91) is in fact the solution of

equation (1.85), which moreover transforms into a solution of the form

of equation (1.90) for V = 0 (_ = 0).

The solution (eq. (1.91)) for a moving medium thus has the same

value which equation (1.90) has for a stationary medium; it represents

waves diverging from a point source or waves converging to a sink.

5The origin of this solution is clarified in detail in section 15.
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6. Generalized Theoremof Kirchhoff

In the theory of the propagation of waves, an important part is
played by the theorem of Kirchhoff_ which permits expression of the
oscillations at any point of space in terms of the oscillations at the
surfaces bounding the space considered (including also the surface at
infinity). This theorem is derived_ for a moving medium, starting from
equation (1.85') (ref. 12). This equation_ if the coordinate system
x ,y_z contracted in the x-direction is introduced

x* - x ; y = y; z = z (1.93)

assumes the form

where

The singular solution X (eq. (1.91)) likewise satisfies equation (1.94)

_c _x* : 0
c2 5t2 g _ #2

(l.95)

The solution X contains the arbitrary function F which_ because of

later utilization of the solution for the proof of the theorem of in-

terest, is specialized.

X = • R - #x* + R*
R* ' _ (1.96)

where R is the distance _.2 + y2 + z2 from the point P, with the

coordinates *Xp,yp,Zp, at wh the potential _ is to be determined to
i_h

an arbitrary point of the space Q_ with the coordinates xQ_yQ,ZQ_ so

that x = XQ - Xp, y = yQ - yp_ and z = ZQ - Zp.

_O

_O
_O
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The function 5(_) is determined such that

c_

c_

b f(_) . 5(_)d_ = f(0)

b

a

if b >0, a< 0 1if --b>0
a

(1.97)

Equation (1.97) is assumed valid for any function f(_) so that

5(_) is everywhere equal to zero except at the point _ = 0, where

5(_) = _. Hence 5(t + R/c)_* represents a converging spherical

impulse (shock) concentrated about R = - ct.

A certain surface S enclosing the volume _ in the space x*,y,z

is considered (see fig. 2 where the surface S is formed by two sur-

faces S 1 and $2; the volume _ is crosshatched).

After equation (1.95) is multiplied by _ and equation (1.94) by

X_ one equation is subtracted from the other and the result is integrated

over the volume _ and over the time t I to t2. Integration over the

four-dimensional volume _(t 2 tl) yields

26 1 t2 at d_ _- _-_x*/ =

__ _2 c i

Application of Green's transformation results in

(1.98)

da(_aX - xa_) = as _ - x (1.99)

where _/_n denotes the derivative along the external normal to the

surface S enclosing the volume g. At the point P the transformation

(eq. (1.99)) will fail because at this point × becomes infinite. The

point P is surrounded by a small surface Z and the volume A
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enclosed by it is excluded from the volume of integration _ In equation
(1.98). The surface Z (see fig. 2) is considered as part of the sur-
face S. The normal to the small sphere Z is denoted by N and di-
rected toward the interior of the volume. If Green's transformation,
equation (1.99) to equation (1.98), Is applied, the following results:

dt dS@__tl 2 _Z dS_- X _N)=If 2 dt_s _ -X _) +

i ptz
7gtl dt _C, d_ d( x _¢_ - ¢ _tX)-

l___ 2 _i 2 dt_, d_(__._ X _-_x*_

( .ioo)

The second integral on the right permits oarrying out the integration

with respect to tlme

(i.i01)

But if t I tends to -_ and t2 to +- so that tI + R/c < 0 and

t2 + R/c > O, then both × and 8X/_t at t I and t 2 are equal to

zero on account of the form chosen for X; hence 12 = 0. The first in-

tegral on the right Is considered

_t t2 dt f dS[@_.)5 + __n . c_K_ ___3 (i.i02)
ii = i 8R i 85 5

1

Integration by parts of the second term wlth respect to time and use of

the property of 5 (eq. (1.97)) yield
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II = J dS __ m t RC

where @, _@/_n, and _/_t are taken at the instant t = - R/c.

(i.i03)

In a similar manner the third integral on the right in equation

(i.i00) gives

15 =
2B

26 i

1

e

l_tl dt

_tl 2dt

_-_ dS x - xY__ " _ t

"
-- c _-_=-R R* x__ _2

e

(i.i04)

where dSx is the projection of the area ndS on the flow velocity V0
(on the x-axis). The integral in equations (1.100) on the left is trans-

formed exactly as the first and, since in this case 8/8N is identical

with _/_R*,
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_x
I 0 = dt dZ _-_- X

1 P

_

(l.lOS)

_o

_o
_D

and, since d_ = 4_R .2 dR*, as the radius of the sphere R* approaches

zero, the following is obtained:

I0 = - A_@t= 0
(i.i05')

Thus on the left the value of the potential at the point P at the in-

stant of time t = 0 is obtained. Since this instant is arbitrary, if

the time origin is everywhere shifted forward by t and all the inte-

grals Ii, 12, and I3 are collected, the potential at the point P
at the instant of time t will be

i i {d] s-

i _ i i F_]ds (i.i06)

where the brackets Indicate that the magnitude enclosed by them is taken

at the instant of time t - R/c.

For V0 = 0 (6 = 0), R* = r and R = r and this equation trans-

forms into the usual equation of Kirchhoff for a medium at rest.

If the potential depends harmonically on the time so that

e = _i_t (1.107)
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then substitution of equation (1.105) in equation (1.104) yields for the

amplitude

f e-ikR2i k * dSx (l.lOa)

4_1_/_ - _2

where k = _/c is the wave-number vector. If, from the nature of the

physical problem, it may be assumed that the disturbances giving rise to

the vibrations start within the surface S 1 and not at an infinite time

back, they do not have time to be propagated to the surface S2 at a

great distance from S I. For this reason_ if S 2 is shifted to infinity,

the values % 5e/_n, $_/St can be assumed equal to zero in it. The

volume _ then takes up the entire space with the exception of S 1 in

the interior. If the presence of an infinitely removed surface is "for-

gotten," it is natural to call the normal n the interior normal since

it is directed inwards from the surface S 1 within which the sources of
vibration are concentrated according to the present assumption. Under

this condition equations (1.104) and (1.106) may be assumed to give the

expression of the potential at any point of space in terms of the values

_, _¢/_n, and _c/_t on the surface S1 within which (or on it) the sound
sources are concentrated.

In conclusion, a certain generalization of this theorem is considered

for "volume" sources of sound. It is assumed that equation (1.94) has a

right side which is considered as a "volume sound source." The strength

of this source is denoted by
the form

Q. Equation (1.94) can then be written in

1 52m 2 _ 1 5 2

7 5t- -A/1- --- (1.94)

Such equations are encountered, for example, in the problem of the dissi-

pation of sound by a turbulent flow (see section 12). If the same opera-

tions which were applied to equation (1.94) are applied to this equation,

an expression is obtained for _ differing from equations (1.i06) and

(1.108) by a volume integral. The additional term, on multiplication of

equation (1.94) by X, will be

t2 f14 = - 4_ dt d_ Q • X

i

(1.io9)
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Integration over t yields (on account of the 5 function form of X)

i14 = - 4_ d_ Q R _-_i,
t_--

C

(l.109')

Hence, in place of equations (i.i06) and (1.108), there are obtained

_p(t) = $ [Q--!]R*d_

and

+ _ $ - _ [_]

cR* 4_ _ _ _2

-_ y. l_TdSc _---L_j x

_P = $ Qoe-ikRR* d8 + _ R*

(1.106')

e-lk_R

l 2i_k $m _ R*

4_ _ 2

_dS x (l.lO8')

if the strength of the source depends harmonically on the time

Q : QO ela_b (1.110)

The theorems derived herein are used in the theory of wave propagation

from a moving source, in particular from an airplane propeller, and in
the problem of the occurrence of vortical sound in the motion of bodies

in the air.

_O

bO
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CHAPTER II

O4
O_

O4

O

f]

PROPAGATION OF SOUND IN ATMOSPHERE AND IN WATER

7. Geometrical Acoustics

In the study of the propagation of sound in the atmosphere or in

water, the state of the medium generally changes little over a distance

equal to the length of the sound wave k. In the background of this

slow change of state of the medium there can also exist smaller changes,

but these give rise to secondary effects which may be considered sepa-

rately (see section 12). The maim features of the sound propagation

picture are determined by the slow changes in the state of the medium

(for example, changes in the force of the wind and in the temperature

and density of the air with increasing distance from the ground surface).

Under these circumstances the application of the methods of geometrical

acoustics is suitable. The fundamental equations of geometrical acoustics

are derived in this section (ref. 13). A start will be made from the

fundamental equations of the acoustics of a moving, nomhomogeneous

medium (section 4). These equations are

_+ch_ [rot [x_ ] } [rot _ x[ ] } _ _ , [ ) : I [ }_ [ _P _pit ( _ • ]I )

_-_ + (_, VP) + (v, VS) + p • div _ + 5 • div v : 0 (2.2)

* (2.3)+ (v,vo) + vs)--0

= c2S + ho (2.4)

The change in v, p, p, and S is assumed small over the distance

of a wavelength of sound. Use is made of this fact for the construction

of an ap[_roximate theory of the propagation of sound:

_ _oei@ 50ei¢ OOel_ (2.5)= _0 " ei_ _ = 5 = o =

= _t - ko® (2.6)
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where _ is the frequency of the sound; k0 = y/c O = 2_0 is the

wave number in the medium, the state of which is assumed normal (cO is

the normal velocity of sound); and ko_ is the phase of the wave. The

magnitudes _0' _0' 50' and o0 are assumed to be slowly varying

functions of the coordinates and, possibly, of the time. The number k0

will be assumed large so that the phase ko@ , on the contrary, varies

rapidly• The solutions for _0' _0' 50_ and o0 will be sought in the

form of series in the reciprocal powers of the large number ik0:

_o _
_o=_&+ i_o + • • • _o= _&+ i_o + " "

_o: _8* _ * °o= °&+ _ + "

(2.7)

_D

Substituting equations (2.5) and (2.6) in equations (2.1), (2.2), and

(2.3) and making use of equation (2.4) result in

iko _0 - V® = v (2•8)

(2.8 _)

ikoqe 0 = b 5 (2.8")

where

q : co - G, re)

_0 -_ -_
: - t_-- + [ _0 ×rOt -_] + [_×rot _0 ] - V(G, _0 ) -

(2.9)

b 4 =

V_O + __VP. _0 - h°o

P O2 c2

h_O0 (÷ i) ic2 t_- - v,v_ (_o- ho0) - _ [_, w0

_0 - h°o
V(h, °0)] - (VP, _0) p • div _0 -

C

_c 0 __
b5= -tY{--- (v,vo0) - (_o, vs)

• div v

(2.10)

(2.10')

(2.10")



NACATM 1599 37

C_

Substituting gO, nO' and o0 from equations (2.7) into equations (2.8)

and (2.8') and collecting the coefficients of the same powers of ik0

give for the zero th approximation (the coefficient of the zero th power

of iko)
!

nO
q_6- v_ • _ - o (2.11)

! --_!

q/c2(_o- h°d) - _(_o,v®) : o (2.11')

!

qoo : o (_.L")

and for the first approximation (the coefficient of the first power of

ik O)

q_o - V® " - b'p (2.1_)

q/c2(_ ho_$) p( "- - _-o, w) : bl (2.12')

q • o6 : b_ (2.12")-

where b', b_, and b_ are the values of b_b4, and b5 on substi-

tuting in them the zero th approximation of g6, _, and o6 from

equations (2.11), (2.11'), and (2.11").

From equation (2.11"), it follows that aS = O, that is, in the

zero th approximation of geometrical acoustics the sound is propagated

without change of entropy (isentropically).

Solving equations (2.11), (2.11'), and (2.11") gives, in the first

place_ the equations connecting the velocity of the oscillations with

the pressure

_6 : w •--Pl (2.13)

and as the condition of the simultaneity of equations (2.11) and (2.11'),

the equation of the surface of constant phase (8 = constant) is

For

where

Iv4 :c2 (2.1_)

V = O_ as is seen from equation (2.9)_ q2/c2 = c02/c2 = Z2,

is the refraction index for sound waves. The equation
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IV_ 2 = _2 is called the "eikonal" equation. For v _ O, the ratio
q/c maylikewise be considered the index of refraction of the medium,
but it now depends also on the direction of propagation of the waves.

The situation is similar to that in crystal optics, but more com-

plicated because for acoustics the medium is not only anisotropic but

also nonhomogeneous, since the position of the axis coincides with the

position of the wind or flow which changes from point to point. Sub-

stituting in equation (2.14) the value of q from equation (2.9) and

solving equation (2.14) for Ivol= _®/_n, where _®/_n denotes dif-

ferentiation along the direction of the normal to the surface of con-

stant phase (® = constant), give

Iv@I co: _ c+ vn (2.15)

where vn is the projection of the velocity of the wind on the normal

to the wave. With _®/_n known, the phase velocity of the waves Vf

can be determined. The equation of the moving phase surface is

@ = _t = ko® = constant. Differentiating this equation with respect to
time results in

5S dn _®
- koy6 " _Y = _- ko_Vf = 0 (2.16)

On the basis of equation (2.15) there is then obtained

Vf = c + vn (2.17)

that is_ the phase velocity of the waves is equal to the local velocity

of the sound plus the projection of the velocity of the wind on the normal

to the wave. This kinematic relation is clarified in figure S; equation

(2.17), which was obtained as a consequence of the strict theory, was

put at the basis of a geometrical theory of sound propagation as one of

the initial assumptions by R. Emden (ref. 14).

It is important, however, not only to find the geometry of the wave

field but also to compute the magnitudes characterizing the intensity

of the sound. The equation for the determination of the sound pressure

_0 is obtained from the equations of geometrical acoustics (2.11) and

(2.12). This magnitude is generally measured in a test. The equations

of the second approximation (2.12) are used to obtain this equation.

The left sides of these,, equations,, agree, with equations (2.11). If the

notations _6 = (Xl, x2, x3), _0 = x4' and a6 = x5 are introduced

and equations (2.11) are written in the form

5

_a_. x_ = o i = l, 2, 3, 4, 5 (2.1s)

k_l
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equations (2.12) can be written in the form

IT

aik xk = b i

k=l

i = i, 2, 3, 4, 5 (2.18)

It

By a known theorem of algebra, equations (2.18) will have solutions xk

only when the right sides are orthogonal to the solutions Yk of the

adjoint system of equations:

5

[ik " Yk = 0 where [ik = aki

k=l

(2.19)

The condition of orthogonality is

5

_b' = 0kYk

k=l

(2.2o)

With

aik

aik determined from equations (2.11), (2.11'), and (2.11") and

transformed_ Yk is obtained from equations (2.19) in the form

h
Y = P • V@, Y% = q, Y5 = -2 q (2.21)

C

Substituting b, b4, and b S from equation (2.10) in equation (2.20) and

making use of equation (2.13) give the condition of orthogonality (eq.

(2.20)) in expanded form:

2 t_- + 2_6divV s+ 2_W 6- (Vs, VZogo qc2) _6:0 (2.22)

where the velocity V S is given by (see fig. 3)

_ (2.23)V S = cn + v

n being the unit vector along the normal to the surface of constant

phase.

Dropping the strokes of _6 and _, because the zero th approxi-

mation is concerned in what follows_ equation (2.22) is multiplied by

and an equation for the square of the pressure amplitude is obtained:
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_2 _ 2 (%' log Dqc2)_2tS[-+ div (Vs_)= v

which together with equation (2.13)

(2.24)

= _- (2.25)
Pq

completely solves the problem of o_taining the sound pressure _ and the
velocity of the sound vibrations _. Equation (2.24) may be considered

also as a certain conservation law. In fact, the mean kinetic energy of

the sound vibrations T is defined by the equation

i pv2 1 _ + 8(< _') (2.26)2 =Z

where the remaining terms are rejected either as magnitudes of third-

order smallness or as magnitudes which within the framework of the lin-

ear theory should, on the average, give zero (for example, p(V, _)).

Since 5 = _/c 2 (compare eq. (2.4)),

1 _ (2.27)T= _lvel 2 ,_2 _2• -_+ (v, ve) 2
Pq pqc

Adding the mean potential energy of the second order

i _2
U=

2 pc 2

results, on the basis of equations (2.9) and (2.14), in

_2 . Co
_= T+U=

2
pqc

If equation (2.24) is divided by

U

(2.28)

(2.29)

pqc2/Co; then after simple reductions_

_g -t
_+ div(,Vs) = o (2.50)

that is, the law of conservation of the average energy in geometrical

acoustics. This law, like the law for Sl and _i (see section 5), is

remarkable in that it contains only magnitudes characteristic for linear

acoustics. It is valid for any nonhomogeneous and moving medium pro-

vided only that the length of the sound wave is sufficiently small that

the approximations of geometrical acoustics are applicable.

_O

_O
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The magnitude _V S is evidently the mean energy flow

(2.31)

It follows immediately that the sound energy is propagated with the

velocity V S = cn + _, different from the phase velocity Vf. The veloc-

ity V S is called the ray velocity. This velocity is equal to the

geometric sum of the local sound velocity cn and the wind velocity v.

It coincides with the velocity of weak explosions according to Hadamard

(ref. 15).

0n the basis of equations (2.23) and (2.25), the energy flow may

also be represented in the form

.. @ _2 ) c oN= +-77 • -y (2.51')
pc

For v = O, q = CO; and the previously derived (section 3) equation for

the flow N = _{ is obtained (the expression N I = _i_ I differs, ho_-

ever, from N = _ since the latter vector represents the average value

in time of the energy flow while N I is its instantaneous value). If

the process is stationary, so that the mean energy of, the_ound field

does not change (at least where the sound field has already filled the

space), from equation (2.30),

air = o

From this equation it follows that, if tubes are constructed the lateral

surfaces of which are formed by lines along which the ray velocity is

directed ("ray tubes," fig. 4), the product _ • Vs, s(s is the cross

section of the tube) is constant

_Vss = constant

Substituting the value of _ from equation (2.29) gives

(2.52)

_2VsS : _VslS I •

pqc 2

2

OlqlCl

(2.33)

where _i; Vsl' Sl' Ol' ql' and cI are values of these magnitudes at

any chosen section of the tube. This equation permits computation of

the pressure of the sound at any part of the ray tube as soon as it is

known at any section of it. To obtain the geometry of the ray tubes,

however, a solution of the problem of geometrical acoustics (equation

of the eikonal (2.14)) is required.
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8. Simplest Cases of Propagation of Sound

A. Propagation in an isothermal atmosphere. - In an isothermal

atmosphere at rest, the velocity of sound is constant (since it depends

only on the temperature). Thus c = cO = constant. The magnitude

q = cO (since v = 0). Hence, from equation (2.33) for the conditions

considered,

_2s = _2Sl" P/Pl (2.34)

In the special case of a plane wave, the cross section of a tube is

constant (s = sI) and

= _l " (Eh)1/2 (_.35)

that is, the pressure of the sound is directly proportional to the square

root of the density of the medium. The ratio P/Pl in an isothermal

atmosphere is determined by the barometric formula

P/Pl = e-X'H (2.36)

where x = M-g/RT, H is the altitude, M is the molecular weight of the

air, g is the acceleration of the force of gravity, R is the constant

gram molecular weight of the gas, and T is the temperature. From

equations (2.35) and (2.36) it is seen that the pressure will decrease

with altitude by the exponential law.

If the wave is not plane but spherical, the cross section of the

tubes increases as the square of the distance from the source r2. Hence

for a spherical wave in place of equation (2.38),

rl 1/2
= _l "--F(P/Pl) (2.3s')

The velocity of the sound vibrations _, in contrast to the pressure,

will increase. In fact, for a plane wave V® = _ (_ is the unit vector

in the direction of the normal to the wave) and therefore from equations

(2.25) and (2.35) there follows

pl)i/2 -, _l 1/2= _ __L (p/ = n • " (Pl/P) (2.37)
PC I PlCl

The mean energy flow
2

N = _,_ = n (2.38)
PlCl

_O

remains constant.
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In a similar manner, for the spherical wave,

_ _i rl 1/2
= n__ -- (PZ/P)

PlCl r

(2.37')

2-_ __ r 1
N= _ = n 2

r Plcl
(2.58')

where n is again the unit vector along the normal to the wave, that is,

in the direction of a ray issuing from the source.

B. Case of the presence of a temperature gradient. - Let the tem-

perature T be a function of the altitude y. The velocity of the

sound c will then vary according to the law

c = _ P =_p (2.39)

and the index of refraction of the sound wave _ will be

- - (2.,_o)
C

The equation of the surface of constant phase (equation of the

eikonal) in the absence of wind will, according to equation (2.14), read

,_2 {ae_2 _2 To (2.41)
Tx] + t_y] = -" T

(The x-axis is directed horizontally (fig. 5) in the plane of the sound

ray and therefore it is assumed that ® does not depend on z.) The

cosine of the angle _ between the x-axis and the normal to the wave

will be

cos _ =

Let _®/_x = cos _0' where _0

on the ground surface, where T = TO .

is the value of _ for

(2.4_)

y = O, that is_

From equations (2.41) and (2.42),
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cos _ = cos _0 "_T_
(2.43)

From this equation it is seen that, if, as is generally the case,

the temperature drops with the altitude, cos _ will decrease in absolute

magnitude and therefore the ray will be deflected from its initial direc-

tion upward (fig. 5). By use of equation (2.43), if the temperature

distribution over the layers is known, the entire curve of the ray can
be constructed.

C. Propagation of sound for a stratified wind. - The case of a

medium of constant temperature and density wherein there is a horizontal

wind (let it be directed along the x-axis) the force of which varies

with the altitude is now considered.

Let the velocity of the wind be

v = v(y) (2.4_)

Then according to equation (2.49), the magnitude q is equal to

q = cO - v(y) _-_ (2.45)

and on the basis of equation (2.14), the equation of the eikonal will be

(2.46)

where r(Y) = v(y)/c O-

The velocity of the wind at the ground surface itself (y = O) will

be assumed equal to zero (y(O) = 0). Assuming, also, as in (B), that

the initial angle of the normal to the wave is equal to @0' _8/_x is

set equal to cos @0 and from equation (2.46) is obtained

cos _0

cos_ = l1 _ cos_orl (2.47)

From this equation it follows that if the ray 6 is directed along the

wind (_ cos @0 > 0)_ then as the velocity of the wind increases with

61n the presence of a wind, as was already pointed out, the line

of the ray differs from the line of the normal. Since, however,

v/c_l, this difference is not large.
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the altitude, cos _ increases in such a manner that the ray is deflected

toward the earth (fig. 6), while a ray traveling against the wind is

deflected upward. This upward deflection is one of the reasons for the

impairment of heating in a wind. Consider a ray which in the absence of

wind almost glides over the surface of the earth (fig. 7).

In the presence of a wind the force of which increases with the

altitude, this ray is deflected upward and passes by the receiver P.

This does not mean, of course_ that at P nothing will be heard since

other rays will arrive there, but the intensity of the sound will be

considerably weakened (small number of rays). If the force of the wind

drops with the altitude, the same conclusion will hold for the propaga-

tion of the sound along the wind direction.

In those cases where not only the force of the wind but also its

direction varies from layer to layer, the picture of the sound propaga-

tion becomes considerably more complicated because the rays will be

curves of double curvature.

9. Propagation of Sound in a Real Atmosphere. Zones of Silence

Under the conditions of the real atmosphere all the factors con-

sidered (wind, temperature gradient) act simultaneously and in a very

complicated manner since the variation of the temperature, force, and

direction of the wind may be very different. In the general case the

direction cosines of the normal to the wave _, B, and y are again

determined from equation (2.14). Since

q= c0-
co/c -_

1

and

i

°

(2.48)

For their determination, it is thus necessary to know the function

® from equation (2.14).
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As could have been seen from the equations of the preceding section,
an essential part in the propagation of sound is played not so muchby
the temperature and the force of the wind as by their change. It is
found that negligible gradients of the temperature or of the wind force
lead to considerable curvature of the sound rays.

Several illustrations borrowed from the paper by R. Emden(ref. 14)
are presented. In figure 8 is represented the case of the propagation
of sound in an atmosphere in which the temperature drops by 6.2° in i
kilometer; on the ground surface up to an altitude of 370 meters there is
assumeda calm_ but further on the velocity of the wind increases by 4
meters per second per kilometer. In this case there is formed a wide
"zone of silence" lying to the right of the sound source. The sound
reaches the surface of the ground only at a considerable distance from
the sound source (beyond 159 kilometers). Similar regions of sound
shadowsare seen in figure 9 where sound rays are shownpropagated in an
atmosphere in which up to a height of 910 meters the temperature drops
by 3° while the wind increases by 2.13 meters per second, and higher up
the temperature drops by 3.65° in I kilometer and the wind Velocity
likewise drops by 3.28 meters per second in i kilometer. Zones of silence
were first observed in the last war when it was found that the audibility
of an artillery cannonadewas greater at places further removed from the
sound source than in its neighborhood.

Very brilliant and detailed computations of the propagation of a
sound-wavefront in a nonhomogeneousatmosphere in the presence of wind
maybe found by the reader in the work of S. V. Chibisov (ref. 16) in
which examples of zones of silence are likewise given.

The velocity of propagation of weak explosions (according to Hadamard)
which figures in the work of Chibisov agrees (ref. 12) with the ray
velocity VS introduced in section 7. Since it is not possible to enter
into more detail in regard to the computational problems of air seismics,
the discussion of these problems is limited to the illustrations given
and to the references cited.

i0. Turbulence of the Atmosphere

The propagation of sound in a mediumthe state of which changes little
over the distance of a sound-wavelength was considered in the preceding
section. In the real atmosphere such a method of treatment gives only the
main features of the sound propagation. As a matter of fact_ in addition
to the slow change of state of the atmosphere from one layer to the next,
there are also more rapid changes brought about by accidental fluctuations
in the velocity of the wind, namely, the turbulence of the atmosphere.
These changes maybe very rapid and their effect on the sound propagation
can by no meansalways be considered by the methods of geometrical
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acoustics since the dimensions of the region in which an appreciable

change of state of the medium occurs may be entirely comparable with

the length of the sound wave.

Before considering the effect of these phenomena on the sound

propagation, the fundamental laws of turbulence are considered. The

theory of turbulence forms a very extensive and as yet far from fully

developed field of hydrodynamics and aerodynamics. At the end of this

chapter the reader will find references to the fundamental literature on

this subject.

The work of A. N. Kolmogorov, M. D. Millionshchikov, and A. M.

Obukhov in recent times has greatly contributed to the development of

the theory of turbulence. The scope and purpose of this book do not

permit any detailed consideration of these works.

The discussion is restricted to what is most required for present

purposes without pretense of mathematical rigor.

The velocity in a turbulent flow 7(_) is a random function. The

entire velocity field of such a flow may be represented as a system of

disturbances ("vortices") of different scales. The largest vortices are

defined by the dimensions of the entire flow as a whole L. The meaning

of the magnitude L may be very different. For example, it may be the

height of a layer of air above the surface of the ground, the dimensions

of the body_ or, it the turbulence is brought about from the initially

laminar flow about the body, the dimensions of the pipe from which the

stream issues, and so forth.

These large-scale disturbances break up into smaller vortices and

the dimensions of the smallest are determined by the viscosity of the

medium, since very sharp changes in the motion of the medium rapidly die

down precisely on account of the viscosity (compare with the dissipative

function Q introduced in section i from which it is seen that the

energy of the flow converted into heat because of the action of the

viscosity is greater the greater the gradient of the flow velocity).

Such a picture of the distribution of the velocities of a turbulent

flow over different scales of disturbances with successive conversion

of the energy of the large disturbances into the energy of small distur-

bances and finally into heat was first clearly described by Richardson.

In order to characterize mathematically the spectral distribution

of the velocity of the turbulent flow v(x) over the different scale

disturbances, the velocity v(x) is expressed as a Fourier type integral

vi(7 ) =Jei(_, x). Ui(d_(_) ) (2.49)
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where vi(_) denotes a componentof the velocity of the turbulent flow
(i = 1,2,3 are the numbersof the axes ox, oy, oz), _(q-, q , q ) is

± _ 2 3
the wave vector belonging to the scale Z = 2_/q, and d_(q) i_ an
element of volume in space of wave number q. Finally, Ui(d_(q)) is the
(infinitely small) Fourier amplitude defining the magnitude of the ve-
locity pulsations of scale Z. It is an additive function of the volume
d_:

ui( l + -- ui( l) + ui( z) (2.49')

If w" (x) were a continuous function of the point x, there could

be written: U i(d_(q)) = v i_) • cLQ(Vi(_)); the "density" of the velocity

in space q and the additive property would then be trivial since

ui(e I + _2) =/ vide

+_2

vid_ = Ui(_l ) + Ui(_z) (2.49")

The density v_, however, may not exist while the additive property,
±

as a more general one, may be maintained (for example, discontinuous

functions).

In particular in this case, Ui(d_ ) is a random function (in the

space _) and cannot, in general, be assumed as continuous. Hence it is

necessary to make use not of the Fourier integral but of the more general
expression (2.49) 7 .

The following assumptions are made relative to the statistical

properties of Ui:

(i) The velocity fluctuations associated with the different scales

are statistically independent so that the mean of Ui(_l) U_2) is

equal to zero

7With regard to the mathematical basis of the expression of a

random function as an integral (2.49), see A. N. Kolmogorov (ref. 18).

In the following discussion, the presentation of A. M. Obukhov (ref. 19)

is followed (essentially). The same results, but by a somewhat different

method, were obtained also by Kolmogorov (ref. 20).
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ui( D = o (2.50)

if the volumes _i and _2

and U k belong to different

gate complex magnitude.

do not overlap (which means that the U i

q). The asterisk * denotes the conju-

(2) For coinciding volumes it is assumed that

Ui(_l)_(_ I) = _ik(_l) (2.51)

is an additive function of the region _. Physically this means that

the intensities associated with the different scales of turbulence are

combined. Since @ik is a certain mean magnitude; it may be a smooth

function and may be expressed in terms of the "density" _ik:

(2.52)

The value _ik shall be called the spectral tensor since it

determines_ as will be seen_ the distribution of the energy in a tur-

bulent flow over the different scales of the fluctuations Z = 2_/q.

If interest lies not in the complete velocity of the turbulent flow

but in only that part of it _P_) which refers to the velocity fluc-

tuations having a scale less than Z = 2_/p_ the expression for _P_)

is obtained from equations (2.48) if the integration with respect to q

is extended over the range q > p:

_i(_) =_q>p ei(_ _)Ui(d_)) (2.53)

The "moments of correlation" Mik(X _ x') are determined by the

equation

m

that is_ as the mean of the product of two velocity components _i and

v_ taken at two different points _' and _". The set of magnitudes

Mik(_' _ _")(i; k = I_ Z_ S) forms the tensor of the correlation moments

For homogeneous turbulence; that is, such that the states of the flow

at different points of space do not differ from one another_ the tensor

of the correlation moments will depend only on the distance between the
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_ _ _ _ (_)points x' and x", that is, on D = x' - x". Substituting _i

from equation (2.53) into equation (2.54) gives

_'k(_) =_q>_p ei_' 1+_)Ui(d£(q,)) • e-i(q, _) . U_k(d_q(_"))
(z.s5)

Use is made of the statistical independence of U i and Uk belong-

ing to different _ (condition (2.50)) and of the additivity (conditions

(2.49), (2.51), and (2.$2)) to obtain

_ik _) --_p ei(q' _) ?ik_)dR
(2.56)

_The motion of the fluid is considered incompressible so that

div V = O. From equation (2.53) there then follows:

8x i , = 0

i=l

(2.57)

Applying this relation twice to equation (2.54) (differentiating once

with respect to _' and again with respect to _") results in

5

• = 0
i3 k=i

(2.58)

From the preceding and from equation (2.56) it then follows that

the spectral tensor _ik_) must have the form

_ik_) = (Sik - qiqklf(q)q2 (z.s9)

This tensor is now connected with the energy distribution in a turbu-

lent flow over the fluctuations of different scales _. The energy
shall be considered as referred to unit mass so that the measure of

energy will be v2/2. The mean energy E(p)_ referring to the velocity

fluctuations the dimensions of which are less than _ = 2_/p# will be
equal to



NACATM 1399 51

O_

O

!

O
O

E(p)=
5

i=l

2 (0)-- vii

i--z (2.60)

or on the basis of equation (2.59),

E(p) = 4_jq>_p f(q)q2dq (2.61)

For determining the form of E(p); use is made of dimensional con-

siderations. The flow is assumed not only homogeneous but also isotropic

(of course again statistically in the mean). The turbulent motion of

such a flow must be maintained by a certain constant supply of energy

from outside; for example; by the energy of solar radiation giving rise

to the motion of air currents.

This same energy, since a stationary state is considered, is dis-

sipated in turbulent motion, being converted because of the action of

viscous stresses into heat. The energy dissipated shall be denoted in

unit time (per unit mass of gas) by DO . (It is equal to the supply

of energy from outside.) The dimensions of DO are -L2T-3(cm2/secZ).

In a developed homogeneous and isotropic turbulence its spectral state

must be determined by the supply of energy which maintains the turbu-

n pmfence; that is, E(p) = F(D0;P). Representing F in the form DO • ,

a dimensional equation for determining n and m is obtained in the

form

L2T-2 = (L2T-3) nLm (2.62)

from which n-- 2/3 and m-- -2/3. The impossibility of forming any

nondimensional combinations from DO and p leaves

E(p) = constant D2/3 p-2/5 (2.63)

A more detailed analysis by A. M. 0bukhov (loc. cit.) shows that

constant = _/_ . -2/5 where x is a certain nondLmensional number of

I

the order of l; thus, in the notation of 0bukhov_

E(p)-- -,72" p-2/s (2.6s')

Since p = 2_/Z, E(P) --"Z2/5 .
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This law, established by A. M. Obukhov(ref. 19) and A. N.
Kolmogorov (ref. 20) is usually briefly referred to as the "2/5" law.

From the law it follows that the energy of homogeneous and isotropic

turbulence is concentrated mainly in the region of large-scale fluc-

tuations of the velocity. The value of the energy E(I) is restricted

by the maximum scale of the turbulence L determining the dimension

of the flow as a whole. For atmospheric turbulence L is the height

of observation above the earth's surface.

Differentiating equation (2.61) with respect to p

equation (2.65) give

5

f(p) = _p _ = 5

and using

(2.64)

and therefore the spectral tensor is equal to

_ik_)-- (Sik qiqk7 )_-II/5 (2.65)

In concluding, the mean-square difference of the velocity components

taken at two different points of space is computed:

-- -

On the basis of equation (2.54),

(2.66)

from which, with the aid of equation (2.56), there is obtained

(2.67)

(2.67')

and

_, q, and
result in

Introducing the new nondimensional variables _ = ql p, _ -- q2 p,

y = qSp (df_ = dec d13 dy/p 5 and (q-'*, # = kip + _'_I_,+ ml_, where

are the projections of p) and using equation (2.65)

where the constant

eq. (2.64)).

(_('I,) - v[(l"))2 = K2_2/5 (2.68)

K 2 is of the order of magnitude of y (see

wD

w)
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A. M. 0bukhov (ref. 19) gives an estimate of the value of y from

the fact that the energy of the atmospheric turbulence is derived from

the energy of the solar radiation. According to Brent (ref. 21) 2

percent of the sun's energy is converted into the energy of atmospheric

turbulence and in this way is dissipated, being converted into heat.

This gives DO = 5(erg/sec3), which leads to the value y = 2.4.

All the results given refer to isotropic and homogeneous turbulence.

A wind blowing under actual conditions may perhaps be considered as an

isotropic turbulence provided all the gigantic air flows in the atmos-

phere as themselves are not considered turbulence phenomena of the air

envelope about the earth.

Such a point of view is possibly justified in meteorology and
geophysics, but it is unsuitable for an observer who has little time

at his disposal for following the changes in weather (at least in
relation to the wind). Hence for short intervals of time in the course

of which there is observed a prolonged constancy of the mean wind, it

is convenient to consider the turbulence as superimposed on the mean wind
(and the change of "mean" wind will lie outside the small scales of

time in the course of which the observation is conducted 3 for example,

in the course of minutes or hours). For such an approach the preceding

derived equations may be assumed valid in a system of coordinates mov-

ing together with the mean wind. The value of the constant _ or K2

in equation (2.68) may then depend, however, on the absolute magnitude

of the mean wind velocity v O. This evidently has also been observed

in tests (see the following).

ii. Fluctuation in Pl_se of Sound Wave Due to Turbulence of Atmosphere

Very interesting tests on the propagation of sound under the actual

conditions of a turbulent atmosphere were conducted by V. A. Krasilnikov
(ref. 22). His tests, the main features of which shall be described in

this section, are of interest from two points of view. In the first

place; they provide a method for the study of atmospheric turbulence_
and in the second place, a circumstance which bears a direct relation

to our subject, they throw light on the laws of sound propagation in a

turbulent atmosphere. They also have a bearing on the accuracy of

operation of direction-finding acoustical apparatus.

The test of Krasilnikov consists essentially of the following: At

a point Q is placed a sound source (reproducer; fig. i0) at some

distance from two microphones M I and M2. The distance MIM 2 =

is the base of the directional-finding pair. The distance QB from

the source of the sound to the center of the base is denoted by L. If

the base were turned at a certain angle to QB different from 90o3
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then on account of the different distances QMI and QMZ the sound

wave would arrive at the microphones M I and M_ with different phase.

By determining that position of the base MIM 2 (by an objective method

or by the binaural effect) for which this difference in phase is equal

to zero_ the direction to the source Q may be determined. On this

principle are based acoustical direction finders. Such difference in

phase may_ howe ver_ also be obtained for the "correct" position of the

base MIM 2 (at angle 90 ° to QB) if the physical conditions of the

sound propagation along the two rays QM I and QM 2 are different.

Such difference in conditions is obtained as a result of the turbulence

of the wind.

The velocity of the wind_ on which the wave phase depends_ is a

random function of the point of space. On account of these random

differences in the velocity of the wind along the two rays QM I and

QM2_ the difference in phase of the waves arriving at M I aud M2 is

likewise a random magnitude. This phase difference _ was determined

i__nnthe tests of Krasilnikov; in particular_ its mean-square value

_2 was found.

As has been shown (section 7), the phase velocity of sound in the

presence of a wind is equal to Vf = c + v n, where c is the velocity

of sound and v n is the projection of the wind velocity on the normal

to the wave. In this case the directions of the normals for the rays

QM I and QM 2 differ little from the direction QB, which is taken

for the x-axis. The projection of the wind velocity on this axis is

denoted by v, and Vf = c + v is obtained. The phase of the wave

passing from Q to M I will be

L L

el = _ c + v I @0 - VldX

(terms of the order of v]2/c2 and the differences between dx and

ds I = dx/cos @ are neglected; see fig. i0) where vI denotes the

value of the velocity on the ray QM I. A similar expression will be

obtained for the phase in the microphone M2. For the difference in

phase_
L L

* --e2 -el- (Vl - v2) x = d× (2.7O)

(2.69)
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where v 2 is the value of the projection of the velocity in the second

ray (QM2) on the axis. The mean value of @ is, of course, equal to

zero. The measure of W will be V- From equation (2.70),

L L

- _x' _x" •av(x')a_(x") (_.71)

The averaged magnitude under the integral sign is equal to

av(x'bv(x")= [Vl(X')- _2(x')][Vl(X")- v2(x")]

: Vl(X,)h(x")+ v2(x,)v2(x")- h(x,)v2(x")-

" x' (2.72)Vl(X )_2( )

On the basis of equations (2.57), (2.66), and (2.68),

-_ 1. 2r2/5
v I - vI v 2 = _t 12

(2.7S)

where r12 is the distance between the points i and 2.

Use is made of equation (2.75) to obtain

_IK2_r2/3 r2/3 r2/3
Av(x')•Av(x"): - _ [z'z" + 2,," - 2,1" _ r2/3 ,}2"1

(2.74)

from equation (2.72).

In figure i0 it is seen that

2 : r2 -x2)2 (l+O 2)ri'i" 2'2" = (xl

2 2 /

r2,1,, = r2,,l, = txI - x2)2 + (xI + x2)2 82

((9< < i)

In this manner there is obtained from equations (2.71), (2.74), and

(2.75)
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L L

(x 1 - x2)2/5(1 + 02) 1/5 } (2.76)

Setting Xl/l,r_ and y = x2/L" gives equation (2.76) in the formx

i i

(2.76')

If in the preceding double integral are introduced the variables

_ x - _ and _ = x + y, then for @ _ 0 it does not depend on 0e

and converges to a value of the order of i. Hence

7-- constant K2 (_)2 L8/305/5 (2.77)

Denoting the length of the base MIM 2 by _ and remembering that

e = I/2L result in

= Tl/2 516
= constant K _-_

(2.78)

Thus, the mean-square fluctuation of phase of the direction finder is

proportional to the sound frequency _, to the square root of the

distance from the source, and approximately (exponent 5/6) to the length

of the base. The test data of Krasilnikov (loc. cit.) very well con-

firm both the dependence on _ (the tests were conducted in the range

from I000 to 5000 hertz) and the dependence on Z (~Z5/6). It is of

interest to remark that the constant K according to the data of

Krasilnikov is proportional to the mean velocity of the wind _. The

same result was reached by Gedicke (ref. 23) and Findesen (ref. 24),

who measured the turbulence of the atmosphere near the ground. This is

in agreement with the remark herein on the fact that the turbulence of

the atmosphere, if the observation times under consideration are not

too large_ must not be considered isotropic (section i0).

_D
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The question of the error of the direction finder will now be

considered. Let the direction at the source make the angle _ with the

direction of the base. Then the difference in phase at MI and M2

in the absence of turbulence will be

= 2_--!cos _ (2.79)
k

The error _x_ in _ due to the random fluctuations of _ will be

x s, (2.80)
_ = 2_Z sin

At large values of _ (_~_/2) for the mean-root deviation of [x_2

there is obtained

--_ X /_ constant= 2, z =  1/2 -l/6 (2.81)

Making use of the data of his tests; Krasilnikov determined the numerical

value of the constants entering equation (2.81) as follows:

= 0.3 • z-l/6 i, (2.82)

where _ is in degrees_ Z and L in meters; and the mean velocity of

the wind is in meters per second. For example, for Z = i meter_ v = 2.7

meters per second, and L z 2000 meters, there is obtained _-7----_= 3° .

The value, if compared with the errors observed in practice of acoustical

direction findersj is somewhat exaggerated.

The fact of the matter evidently is that acoustical direction

finders generally operate in a range of frequencies of 200 to 500 hertz.

For these low frequencies the approximation of the geometrical acoustics

on which the preceding computations are based may not be suitable.

Krasilnikov (ibid.) also conducted interesting observations on the

random variability of the phase in time. The measurements were in this

case conducted with the aid of a single microphone M_ the values of

the phase W at two instants of time separated by a small interval At

were compared. The results were worked out for the case where the

mean wind was perpendicular to the ray joining the source Q and the

microphone M (fig. ii). The computation was conducted on the basis of

the hypothesis (section IO) on the isotropic and t_omogeneous character
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of the turbulence in a system of coordinates moving together with the
wind. In the time interval _t the phase at the point M changesby

At* = 7 AV • (ix (2.83)

where Av is the change in velocity during the same time. Hence

L L

(2.s4)

The principal change in the velocity is due to the transport of turbu-

lence by the mean wind so that the change of the velocity v in the

time _t may be represented as the result of the displacement of the

turbulence by a small distance 6 = v • At. Then

M)
W)

_(x')Av(x")= [v(x',o) -v(x,, 6)][v(x",o) v(x",8)]

= v(x,,oIb(x",o) + v(x,,6) • v(x",s) - v(x',6)v(x",o) -

v(x',O)v(x",6)

Making use of the "2/3" law gives

(2.85)

_v(x,)Av(x")= - T (x'- x")213- 2[(x,- x")2 + 62]1/3

= K2 _r2 + 62) 1/5 - r2/5]_ r2 = (x ' - x") 2 (2.86)

Substituting equation (2.86) in equation (2.84) and applying to the

obtained double integral the same considerations that were applied to
the integral (2.76) result in

 ons a t (2.87)

where the constant is found to be _ 3. Thus

_'t@2 = K_/_ L4/3 _---_ • At) 5/6
C2

(2.ss)
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Test data give the relation (_ • At)4/6 rather than (_ • At)S/6. It

is as yet difficult to explain the source of this divergence. Equation

(2.88), since Ate2 , L, v, At, and _ are known from tests, permits

determining the constant K in the "2/5" law. For v = 6.5 meters

per second there is obtained from tests

K = ll(cm2/5/sec)

The _urbulence measurements at the height of 2 meters above the earth

cor_ucted by A. M. 0bukhov and N. D. Ershova give (for v : 5 m/sec)

the value K = 5.1 centimeters2/5 per second.

Gedicke (ref. 25) obtains for K (at v = 0.65 m/sec and height

1.15 m) the value 2.05 centimeters2/S per second. It follows that the

order of magnitude of K is in all cases obtained as that of unity.

The increase of the constant K with the velocity of the wind is a

fact_ however_ which shall have to be taken into consideration in
another connection.

12. Dissipation of Sound in Turbulent Flow

It is a well-known experimental fact that in the presence of wind

the audibility of sounds is markedly decreased. This decrease in

audibility is not a cons@quence of the curvature of the rays in a wind

with velocity gradient considered in sections 8 and 9; it has a more

complicated character and is connected with the turbulence of the wind.

The first to point out these phenomena in connection with the occurrence

of acoustical fading were Dahl and Devick (ref. 25). The same phenomenon

of acoustical fading was investigated by Y. M. Sukharevskii in measure-

ments on mountains (Elbruz expedition of the USSR Academy of Sciences,

1940). The general impairment of audibility in a wind has also been

pointed out by Stewart (ref. 26).

From the experimental viewpoint the problem was investigated most

thoroughly by Sieg (ref. 27) who showed the existence in a wind of an

additional damping of sound exceeding the damping associated with the

molecular properties of the gas (viscosity, heat conductivity, and

Kneser effect). The results of Sieg may be essentially reduced to the

following: In the frequency interval 250 to 4000 hertz in a weak wind

(i to 2 m/sec or at an almost complete calm) considerable fluctuations

in the sound intensity (fading) are not observed_ but the intensity of
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the sound drops with increasing distance; the dampingcoefficient
being equal to 1.5 to 2.2 decibels at i00 meters8. Sieg does not find
any dependenceof the coefficient _ on the frequency. It should be
borne in mind_ however_ that the accuracy of Sieg's observations is not
large; the directional characteristics of the source were not taken into
account; and the conditions under which the points for the various
frequencies were taken were not identical. For this reason this result
doe_ not appear entirely reliable; it gives rather the order of magnitude
of _ which in the interval 250 to 4000 hertz does not change.

where v

In the case of a strong gusty wind the coefficient of damping
decreases_ reaching a magnitude of _ to 9 decibels at i00 meters (for
a wind with gusts of 7 to 17 m/sec). Under these conditions the
dependenceof _ on the frequency becomesmore marked__ being equal
to 5 decibels for 250 hertz 3 8 decibels for 2000 hertz_ and 9 decibels
for 4000 hertz (at i00 m). Under the sameconditions_ fading is observed%
the fluctuations of the intensity attain 25 decibels. Both these effects
are explained without forcing by the theory of the propagation of sound
in a turbulent flow (refs. 28 and 29). In considering the propagation
of sound in a turbulent flow_ it is first of all necessary to bear in
mind that those fluctuations of the velocity of the stream having the
scale Z which is considerably greater than the length of the sound
wave k do not lead to the dissipation of the sound. They bring about
only changes in the shape of the rays and therefore a general fluctuation
of the sound intensity at the location of the receiver (fading). The
effect of these large-scale pulsations maybe eonsidered by the method
of geometrical acoustics. Hencethe velocity of a turbulent flow must
be decomposedinto two components _ (macrocomponent)and _ (micro-
component):

v _ ei(_,_] _(d_(_))
0

(2.89)
u ei( ,I)

0

includes the mean velocity of the flow v O. The magnitude

qo = k/_ where k _ 2_/k, is the wave number of the sound wave and
is a nondimensional number >>i. The dissipation of sound from a

parallelepiped L5 where I_>>X and L< :_</qo will now be considered.

8There is here subtracted the molecular absorption (Kneser effect

with account taken of the humidity of the air). It has a considerable

value starting with frequencies of i000 hertz. The classical absorp-

tion due to the viscosity and the heat conductivity is of significance

only for frequencies greater than i0_000 hertz.

_0
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Under this condition the velocity v may be considered approximately
constant in the volume.

In a local system of coordinates which move with the velocity v,

the frequency of the sound f varies in it (Doppler effect) only by the

small amount f • v/c_ but the frequencies of the turbulent fluctuations

in this system are equal to v = u(Z)/_, where _ is the scale of the

pulsations and u(_) is the velocity of the pulsations associated with

this scale. According to the "2/3" law, u2 = constant • _2/3 <<f (where

constant ~ i cm4/3/sec)," so that v g constantl/2 • _-2/3 << f for all

values of f of practical applications. 9 Hence in the propagation of

sound through a turbulent flow, only the instantaneous picture of the

turbulence and not its process with time is of significance. For the

same reason it is not to be supposed that the damping of sound in a

turbulent flow is conditioned by the existence of turbulent viscosity.

The tensor of the turbulent stresses with which the concept of turbulent

viscosity is associated is obtained as a result of the averaging of the

turbulent pulsations for the given mean flow. This averaging presupposes

that all the changes in the mean flow occur more slowly than the random

pulsations of velocity produced by the turbulence. For a sound wave the

situation is the reverse (v_f). The effect of the turbulent flow on

the sound wave should reduce to the dissipation of sound in a manner

simllar to the dissipation of light passing through a turbid medium_

in both cases random changes of the velocity of the wave propagation

occur. An estimate of the magnitude of this dissipation is now made. A

start will be made from the equation of A. M. Obukhov, approximately

taking into account the presence of vortices. The quasipotential of the

sound wa_es is denoted by _ and the total velocity of the flow by

V = v + u to obtain from equation (2.84) (for VN 0 _ 0, vlog c2 = O,

v/c <<1)

c2 2 - + V, AV)dt = 0 (2..90)

Passing over to a local system of coordinates in which v = 0
results in

91t should be remarked that there exists a minimum scale of turbu-

lence _ = _min = i/_ • _3/DoP3 (DO is the supply of energy,

is the viscosity of the medium_ p is its density, and x a number

i. See A. M. Obukhov (ref. 19). On account of this, the inequality

v_f may be violated only for f of the order of several hertz.
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c2 _t 2 -AS = - c-_ , V_-_ (V_, A])dt
(2.91)

The right side of this equation will be considered as the disturbance.

By rejecting it completely, the zero th approximation _0 _ representing

the fundamental wave 3 is obtained as

_0 = Aei[ a_t-k (-_i'_)] (2.92)

where n I is the unit vector in the direction of propagation of the
fundamental wave k = _/c. The complete solution will be

= 40 + _ (2.93)

where _ is the dissipated wave. For large distances

parallelepiped considered, _ is of the form

R from the

B i (cot-kR) (2.94)
e:[e

The amplitude of the dissipated wave B is determined by use of

the method of the theory of disturbances and the substitution of @0 in

the right side of equation (2.91) in place of _. There is then obtained

c2 _t 2 - _ _' V t_--/

t

+2 (v@O' A_)dt = Q
(2.95)

The solution of the wave equation (2.95) having the form of equation

(2.94), as is known, is equal to

i Q ' t -
' _ dv'

,(_, t) = - 4-_L 5 r
(2.96)

where dv' = dx' • dy' dz' and r is the distance between the points

(point of observation) and x' (source of dissipated wave). Let n be

the unit vector in the direction of the dissipated ray (fig. 12)3 R

the distance from the center of the parallelepiped_ and 8 the angle of

dissipation (angle between nI and _). Then, as follows from the

sketch, r = R - _', _) (neglecting terms of the order of x'/R).

Substituting in equation (2.96) Q from equation (2.95) and using

equation (2.92) give for R _
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ei(c°t-kR)R " A_ (2_,k2 + A_', _l)ei(_'_')dv '
(2.97)

where the vector K is equal to

= k([-nl); K= 2ksin

and u' is the value of the velocity u at the point

amplitude of the dissipated wave B is equal to

-+

x ' Thus the

B = _ (2uk 2 + AU, nl)e ,x )dv'

_,/L5

(2.99)

The coefficient of damping m is expressed in terms of the amplitude

of the dissipated wave. The flow of sound energy N into the base of

the parallelepiped L 2 is proportional to A2L 2, while the flow of

energy dissipated from the parallelpiped is obtained by integration

over a distant sphere of radius R and is proportional to R2 /]Bl2d_ ,

Jm_

where d_ denotes integration over all the directions of dissipation.

Since interest lies not in the instantaneous value of the dissipation
/%

but in the mean value, R2 / _d_ must be taken in place of the
%aw

previous expression, where the bar over IBI 2 denotes the averaging

over the velocity fluctuations of the turbulent flow. The mean decrease

of the energy flow in passing through the parallelepiped L 3 will be

AN = zoo)

R2_IBI2d_ (_ is thefrom which _ = AN/NL, and since AN =

factor of proportionality) and N = _A2L2 3

A2L 5
(2,101)
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From equation (2.99) it follows that

16_2c 2
dv '

where p = x" - _' is the radius vector between the points x' and

_'_ and u I is the projection of u on nI. Introducing in place of

x' and x the relative coordinates p and the coordinates of the

X I + X"

center of gravity x = 2 results in

-_ ASL s Idv-- 16_2--_5 pe i (_, P) x

(2.103)

where

(_)MII = u I

TI

uI--ul(_')u1¢_'')

is the moment of correlation.

P = qo"

This moment is identical with the moment

introduced in section I0 (see eq. (2.5_)) for i -- k = i and

Now equations (2.56) and (2.65) are used to find that

Mll(O)=j__q e-i(-_'P) _ q-ll/3dqldq2dq3
0

(2.104)

The multiplication of the expression under the integral in equation

(2.104) by _q2 and by q4 respectively_ is obtained by simply applying

to MII_) the operators _ and _2. Substitution of the moment (2.104)

in equation (2.103) leads to integrals of the form

_D

_D
_D
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fdVP _q>q 0 dql dq 2

0

d% ei(K-_,P) F(q)

::(K 1 - ql)5(K2 - q2)×

_(K_-q_). _(_)= (2_)3 F(_) for K> qo

= 0 for K< qo (2. 105)

H_re 5(x) ]s tho symbol of the 5-function (see sectioa 6). Hence

IT_I_: _s o_.,t:a-in,_d as

B " - ':_A'[,Ok' _ m +
;.k k 2 4-_ _ F •

I I(for K
q0' otherwise IBI?'= 0). From this, on the basis of equation

(2.1o1),

K4 h rK-11/3;:_k4 _ K', + _ d, (,_.107)
"_= ,_--7---_ k2 _

where the int(_gration over the angles is extended to the values K>q0.

S_tting ,::in8/?. = _ and d_ = sin O dO d_ = ,_ d_ • d_ shows that

the integration over [.= K/2k is extended from [ = I/2_ to _ = i.

Carrying out this el_,mentary integration yields

where

_= b5/5 S<2_¥I_2xI/5)2 _ik (2. 108)

_ = _(F,_) I/3 {1 + 25(2_)-i/3 - 21(2_)-4/3 + 0(_-4)} (2.109)

The mal;:it<de 2r_vl/[::k]/3 is the w'locity of the turbulent pulsations;

the scale of which is ]e_ss than k. Thus the coefficient of damping

of the so_nd waves in a turbulent flow is proportional to the square of

the Mat'h n,lmber (M._ = u(k)/c) for the velocity of the turbulent pulsa-

i.ict,_so! sca,le les'-, tham k an_ inversel2 i)_oportional to the length of
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the sound wave k. The magnitude 2_¥i/2j on the basis of the estimate
of A. M. Obukhovgiven in section 10_ is equal to 5. The data of V. A.
Krasilnikov (section ll) and also of A. M. Obukhovand N. D. Ershov
(section ll) give_ for a moderate windj 2_y1/2 _ 6. As already pointed
out_ the turbulence of the wind must not be considered isotropic so
that 3 in general 3 2_y1/2 is an increasing function of the wind velocity.
If use is madeof the as yet not very reliable test data presented in
section lOj it is necessary to assume y proportional to the wind
velocity. This explains the increase in the coefficient of damping
with the wind velocity. The dependenceof the coefficient _ on the
length of the sound wave is obtained in the form x-l/3, that is_ a
very weak dependence_but 3 on the basis of what has been said_ this
dependencedoes not contradict the test data of H. Sieg. In order to
estimate the value of the numerical factor _3 use is again madeof
Sieg's data for a weak wind. In this cas_ 2_y1/2 ~ 6. The coefficient

is equal to 1.S decibels in 100 meters_ which in absolute units gives
= lO-5centimeters -1. For f = 500 hertz (k = 68 cm) there is obtained
_ lO. This value of _ should be considered as entirely reasonable.

_O
LvD

15. Sound Propagation in Medium of Complex Composition 3

Particular in Salty Sea Water

In the theory of sound propagation presented_ the medium was

assumed homogeneous in its composition. In practice_ however 3 it is

necessary to deal with cases where the composition of the medium varies

from point to point (air, for example3 the humidity of which is differ-

ent at different places or sea water with variable saltiness).

All the theorems of geometrical acoustics that were derived in

sections 7, 8 3 and 9 retain their validity for media of variable com-

position. I0 The initial general equations of the acoustics of a non-

homogeneous and moving medium must_ however 3 be modified.

The need for modifying these equations is dictated by the fact that

in a medium of complex composition the pressure p depends not only on

the density of the medium p and the entropy S but also on the con-

centrations Ck of the individual components forming the medium (for

example_ on the concentration of the water vapor in the air 3 the con-

centration of salt dissolved in the water 3 and so forth). Hence the

equation of state must be written not in the form P = Z(0_ S')3 as

previously_ but in the form

lOprovided3 of course 3 that the fundamental hypothesis of geomet-

rical acoustics on the smoothness of all changes in state of the medium
is not violated.
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p-- z(_, s, c) (2.110)

Here P is the density of the medimm and C is the concentration

of the second component in it; C : P"/P', where P" is the density of

the dissolved component_ and 0' is the density of the solvent

(_ : p' + o": p'(z+ c)).

Further; to the hydrodynamic equations it is necessary to add

equations governing the changes in concentration of the dissolved com-

ponent. These changes are produced by convection; diffusion_ and the

action of the gravitational force. In order to write down,he cor-

responding equations_ the flow of the dissolved component J" is noted
as

J"= _p'c + i (2.111)

-4" _+

i = - P'DIVC - P'D2VT + p'ugC (2.111')

where DI is the coefficient of diffusion_ D2 is the coefficient of

thermodiffusion_ u is the mobility of the solvent in the field of

gravity_ and g is the acceleration of gravity. The first term in

equation (2.111) _o'C represents the part of the flow due to the con-

vection of the substance_ and the second term i_ the part of the flow

due to the irreversible processes (diffusion_ thermodiffusion 3 and

motion in the gravity field with friction). On the basis of the law of

conservation of matter_

+ aivj"--o (2.112)

The density of the pure medium p' is subject; of course_ to the

equation of continuity

--_+_' div(p,G) = o (2. 113)

The required equation for C is obtained from equations (2.112) and

(2.1z_):

_C _ idiv i
+ (_vc) = - (2.114)

For the total density P = P'(l + C) there is obtained from

equations (2.112) and (2.113)
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_+ div(_v): - div i

The fundamental dyn_mnic equation of hydrodynamics

_ _ -_ v2
+ [rot v, v] + V-_-

(2.115)

= - VP + g + v _+ ]L Vdiv v
P 3

(2.116)

remains unchanged. The equation of entropy will be written in the
abbreviated form

_s
(vvs):, (2.117)3y +

where $ denotes the changes in entropy due to the irreversible processes

occurring in the motion of the fluid (4 contains terms proportional to

v, k, DI, D2, and u) and also the possible supply of heat from without.

Equations (2.110), (2.114), (2.115), (2.116), and (2.117) form a

complete system of equations for a medium in which some component is

dissolved (water vapor in air, salt in water, and so forth).

In the propagation of sound all the magnitudes characterizing the

medium receive small increments so that v is replaced by v + _, p

by p + _, p by p + 5, S by S + a, and C by C + Z3 where Z

denotes a small change in concentration of the dissolved component that

occurs in the medium on the passage of a sound wave. Substituting these

changed values in equations (2.110), (2.114), (2.115), (2.116), and

(2.117), restricting to a linear approximation, and rejecting the added

terms proportional to v, k, DI, D2, and u, that is, leaving aside the

irreversible processes accompanying the sound wave, give II

_t _ _ _ v_+
+ [rot v, _] + [rot _, _] + V_, _) = - p p2VP_

(2.118)

_5 + _, VS) + , VP) + P div_ + 5 div v = 0
_t

(2.119)

+ (v,w) + (_,vs) = 0 (2.12o)

_D

lithe diffusion of the salt may give an absorption of sound in

addition to that due to the viscosity and heat conductivity.
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az _, vz) ++ ({,vc) -. o (Z.lZl)

= c2 _ + ho + gZ (2.122)

where

c_= h g=
_C 3C 3S

(2.123)

The square of the adiabatic velocity of sound for constant concentration
of the solution is c2.

These equations must be considered as the fundamental equations

for the propagation of sound in a nonhomogeneous and moving medium of

variable composition. If by C there is understood the concentration

of the water vapors in the air, these will be the equations for the

propagation of sound in a humid atmosphere.

The same equations may also be considered as the equations for

sound waves propagated in salty sea water. For this 3 C must be con-

sidered as the concentration of the salt dissolved in the water. In

the presence of entropy gradients (VS _ 0)3 as in the presence of

gradients of the concentration of the dissolved component (VC _ 0) 3 the

right side of equation (2.118) is not a total differential of some

function. Hence even in the absence of vorticity (i.e.3 for rot v = O)

the sound will be vortical (rot _ ¢ 0). Because of this the system of

equations (2.118) to (2.122) cannot be reduced to an equation for a

single function (for example 3 to an equation for the sound potential, to

an equation for the sound pressure3 and so forth).

In order to change to the equations of geometrical acoustics it is

noted that equation (2.121) does not differ formally from equation

(2.120). Hence 3 following the same method which was used in section 7

for deriving the equations of the geometric acoustics of a medium of

constant composition 3 and assuming, in addition to equations (2.5) and

(_.v),
If

X Z 0 ei@ EO: ; Zo = z6 + _ + • • • (2.124)

result in

!

_O = 0

!

Zo = o (2.z22)
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that is_ in the first approximation of geometric acoustics the sound is

propagated not only isentropically but leaves unchanged the composition

of the medium (Z_ = 0). All the remaining conclusions with regard to

geometric acoustics previously obtained likewise remain in full force.

The effect of the nonhomogeneity of composition of the medium is in this

approximation reduced to the effect on the velocity of sound in the

medium c and on the density of the medium p.

The sound will be propagated within the ray tubes with velocity

:_S ---- cn + v; c --

,C

(2.126)

and the pressure will be subject to the law

_2s
constant

pqc2 -
(2.127)

(compare section 7, eq. (2.52)).

The particular case when the medium is at rest is now considered.

This case is of special interest for water in which the velocity of

sound is large while the velocity of flow is small.

For a medium at rest (3 = 0), from equations (2.118), (2.119),

(2.120), (2.121), and (2.122),

8_ v_ + vp (_-h_ - gZ) (2.1181)5"£"= - T 02 c 2

_0
_0

c 2
(2.119')

5T --- - (_, vs) (_. 12o' )

_y= - (_,vc) (2.121')

Setting _/p = _ and making use of equations (2.120') and (2.121')

give the equations for N and 7:

2 -@

a_ an _ an vp (vp',_)
_7 = -vYt + 2 " 57 + _2c2pc

(2.128)
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where

c-_Y+ air _ + ' _ --0pc 2
(2.129)

C_
C_

VP' = hVS + g • vC : Vp - c2Vp (2.130)

Substituting _H/_t from equation (2.129) in equation (2.128)

gives the equation for the velocity of the sound vibrations

___t2 = V(2 . div _ + (VP',_))p _ Wp' P div_ + V__ppD (Vp'_)(2.131)p

This is the equation for the propagation of sound vibrations in a

medium at rest in which the density, temperature (entropy), and concen-

tration of the dissolved substance vary. It is seen from the equation

that for the computation of _ it is sufficient to know c, p, and p

as point functions, where c is the adiabatic velocity of sound and p

is the total density of the medium.

Equation (2.131) does not reduce to an equation for the potential

or the pressure.

After [ has been found from equation (2.131), the sound pressure

is found from equation (2.129) as

2 (2.132)-- = _ = div _ + dt
P P

In certain special cases equation (2.131) may approximately be

replaced by the simpler wave equation. In fact, a medium for which the

term in equation (2.121) containing Vc 2 is much greater than the terms

containing VP' is assumed. Then, rejecting the terms with Vp' and

setting _ = - V@ (_ is the velocity potential of the sound vibrations),

the usual wave equation is obtained:

c2 (2.133)
_t 2 =
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in which, however, c varies from point to point.

The term with Vc2 is Vc2 div _ and in order of magnitude is

equal to Vc 2 • _ Ik is the wave number). The greatest term containing

VP' is VP' div g/p, in order of magnitude equal to VP' " k_/p.

Hence the terms containing Vp' may be rejected and the term containing

Vc 2 retained if

Vc2 >>VP (2.134)
P

In order to obtain the condition satisfying this inequality, c2

and p' are considered as functions of p, T 3 and C. Then

_c2--\p_-]T,c" vp+ \T_--$,c VT+ \C_=]p,T
vc (z.135)

_0

= _ -_ " _ ,c ,c

Here (_P_P)p,C = i/a2 (a2 is the square of the isothermal velocity

of sound), (bp_T)p, C = - P6 (_ is the coefficient of volume expansion)#

i (bV)T is the relative change ofand (_p_C)T, p = - px, where x = V _-C ,p

volume of the fluid (gas) with change in the concentration of salt (or

vapor, respectively).

Since

a2 = Cp . c2

C v

and

from equation (2.156)

Cp - c v = a2_2T

V.p_/.= _ a262T_

P P • cv
VP + c26 " VT + c2xVC (2. 137)
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These equations; on the basis of experimental data, permit solving the

problem of satisfying (or not satisfying) inequality (2.134).

In particular; for salt sea water, this inequality is evidently

satisfied. In fact, for water p = 2 10 -4 at 18 ° C, and at 4 ° C,

i (_V_C) for a solution of NaCI or KCIp = 0. The magnitude × = _ p,T

at 15 ° is about 0.15 to 0.20. According to the measurements of A. Wood

(refs. 30 and 31); the velocity of sound in sea water at t = 16.95 °

and saltiness of 35.02 percent (that is, at C = 3.5" 10 -2 ) is equal

to 1526.3±0.3 meters per second and is governed by the equation

c = 1450 + A.206t - 0.0366t 2 + 1.137 • i03(C - _.5 10 -2 )

whence

(ao2/ c)--2o• 1.137- • c2

It is seen that -_Sc2/SC>>_c 2. Further, " _"(_c2/_T)p,C = 2c 4.2 :

5.8 • i0-3 • c2 and pc 2 = 2 • i0 "4 • c2, that is, (_c2/_T)p,C >>p • c2.

Thus the magnitude Vc 2 for salt sea water considerably exceeds

the magnitude _Tp'/p. Hence the wave equation (2.133) may be assumed to

describe the propagation of sound in calm sea water in an entirely satis-

factory manner.
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CHAPTERIII

MOVINGSOUNDSOURCE

14. WaveEquation in an Arbitrarily Moving System of Coordinates

In a system of coordinates (x,y,z,t) associated with the air at
rest; the wave equation for the acoustic potential _ is

b2 b2 b2
i b2m o; a=-- + +-- (s.l)

A_ c2 St 2 = _x 2 _y2 _z 2

It is assumed that the position of a moving source of sound is determined

by the coordinates

x = x(-_) "_

y --Y(t)

z = Z(t)

(_.2)

In this case it is convenient to introduce a system of coordinates

(_,_,_,_) connected with the sound source

= x - X(t) q = y - Y(t)

= z - z(t) _ = t

In this system of coordinates the velocity of a wing V0 has the

components

dX
V0x = _ d-_= - vx

dY

Voy = - d-_ = - Vy

dZ
Voz = - vdt z

Equation (3.i) is then transformed to the system of coordinates

(_,_,_,_). For this purpose

(_.3)

(3.A)

_(x,y,z,t) = @(E. + X(_)/ _ + Y(X), [ + Z(_); _) (5.5)
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C_

C_

so that

that is,

St Z _Z _ + (v_V)(v_W)_ - ,

Hence, the wave equation (3.1) in the system of coordinates _, _,
will be

1 _+ 2 (v,v)__a_ c2 _2 7 _ -

o2 (_,v)(_,v)_+ c_\dt' _ _ 0

or, if in place of the velocity of the source v, the velocity of the

wind V0 is introduced_o then

1 _ 2 __'_o,V'_ z -._q' o2 _._ - c-7 _ - _ (Vo,V)(_o,V)-

-j_m--, = o

(3.6)

(3.6')

(3.7)

(3.7')

This equatio< may be considered as the equation for the pro!)a_ation of

sound in a medium moving with velocity Vo(t ], depending on the time but

not depending on the coordinates. In fact, it almost agrees with the

previously (Chapter I, section S) derived equation (1.85) governing the

propagatio_ of sound in a medium in which the wind blows with constant

velocity VO. The difference lies only in the presence of the last term

containing the acceleration d_o/dt. If _t is assumed, however, that the

velocity of the wind V0 is a function of the time, an equation accur-
ately agreeing with equation (3.7') would be obtained in section 5. The

assumption of the presence of such wind is, of course, an artificial one,

but it is compatible with the equations of the hydrodynamics of an in-

compressible fluid. These equations, in the presence of external volume

forces 0_, are

_V _ _
+(v,v)v= v_ + _;divV= o (s._)

0
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With the assumption that

there is obtained
V and p do not depend on the coordinates,

dV 0

dt - g (3.9)

It follows that such motion i_ realized in a fictitious field of gravity

having an acceleration g = dV0/dt. Thus, in considering the sound field

of a moving source, the source is assumed as stationaryj but it is then

necessary, in general, to assume that the acceleration of a variable wind

is conditioned by the "force of gravity" producing the acceleration

dv

g - dt (3.10)

_O

_D

15. Sound Source Moving Uniformly With Subsonic Velocity

An arbitrary sound source moving with constant velocity v less

than the velocity of sound c will be considered. The velocity v is

directed along the x-axis. Changing to a system of coordinates fixed
to the sound source

= x - vt B = Y _ (3.11)

_=z _=t /
Nields a particular case of equation (3.7):

A¢ 1 _2¢ -2v _2_ v 2 _2_ 0 (3.12)
2_,r2 + 2 2 -c c _ c _2

and _ntroducing, as was done in section 5, a system of coordinates con-

tracted along the x-axis

X - vt

_=z _=t

yields_ in place of equation (3.12)_

c2_ +-v'1_ _ c =o

a_ _2 _2 _2

= _---.-_+--_ + _-.--._

_=v
C

(3.13)

(3.13')
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This equation agrees with equation (1.94)_ 12 and the generalized theorem

of Kirchhoff (see section 6) may be applied to it. It is evidently suf-

ficient to restrict this report to the consideration of the sound of fre-

quency _ (in the system attached to the source), so that

= @e imt (3.14)

On the basis of equation (1 .108),

,ss SS.n {e-i h] +1

I _ . e
_F : _-_ R* _'_k--Y_Jl ds

2i_k S_ e-ikR_-_2 _ _ . dS

(3.15)

where 9p is the value of the potential at the point of observation P,

and the surface S encloses the source. Further

(3.16)

where R* signifies the distance (in the system _*_ _, _) from the

point of ovservation P to the point of the surface S(Q):

n = nQ- Up

= _Q- _p

(3.17)

The wave field far from the surface S(R* _ -) is now considered. For

large distances from the point P from the surface, as is seen from

figure 13,

R* = R_ + R_ ' cos 8pQ + ..-
(8.18)

where R* is the distance 0P, R_ is the distance OQ, and 0pQ is the

angle between OP and OQ. On the basis of equations (5.18) and (3.17);

_ -_ + _ • oos o:pQ+ -- :R:p+ _ +R- -_" +R* _ +R_ + ......
-__ _ _2 -4__ _------_ -,A_- _

- (s.19)

iZIt is necessary to bear in mind that _ is now v/c_ whereas in

section 6, _ denotes Vo/c ; thus _ in section 6 and here differ in

sign (because V0 .... _-].
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where

-_ +R_ cos epQ
(3.20)

Substituting the value of R (eq. (3.19)) in equation (3.15) and neg-

lecting terms of the order i/I{m2 yields

Jl = 47_p LJ S _n - ik@ _-_-;e -ikA • dS + #______ } Jle d (3.21)

The expression in braces depends only on the dimensions and form of the

surface and the angles determining the direction of the radius vector

OP. These angles are different depending on whether they are taken in

the contracted system _, _, { or in the initial system _, _, _ (they

differ by a magnitude of the order of B2). Let them be 8, X in the

system _, _, _ (and 6_ X in the contracted system, respectively).

With the system _, _, _, the following may .be written:

-ikRp
e

_(_p,1]p, _p) = R_ Q(e,X)

where _ in R and _p must be expressed in terms of _p.

basis of equation (3.14), the following is obtained for _:

@here Q(8,_) is the integral

=J(_ _RQ] -ikA
4_Q(e,×) _ - ik¢ nZ-n---/e

(3.22)

On the

Q(e,×) (3.23)

zi_k P -ikA

• as +_4 _e dS(3.2_)

The magnitude Q(8;X) determines the force of the sound source (it has

the dimensions of the volume velocity (cm3/sec)) and its direction. If

Q(O,_) is developed in a series of spherical functions P_(cos O)eimx,

where Z = 0_i_2_3_'''_ and m = 0 _i_ +2_ ±3_'- • +_, then

n +Z

Q(O_) = g g Q_m if(cos O) eimx

Z=O m=-Z

(3.25)
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When all the coefficients

a source of zero order results in

e

e (_p,np,_p,t) =

QZm' except QO = Q, are equal to zero, then

• QO (3.26)

If, for example, only
0

PI = cos 0,

QI0 is different from zero, then, s_nce

_(_p,_p,_p,t) = QIO" cos @ (3.27)

that is, a dipole source where the dipole is oriented along the q-axis.
The terms with Z > i give multlpole radiation.

Consideration will now be given to the dependence of _ on the dis-

tance. It is evident that the surfaces of constant amplitude _ diverg-

iny in direction by angles included in Q(8,_) w_ll be the surfaces

R_ = constant (3.28)

. J 4
= "V + _2 + [2, that is, the surfaces of constantBut Rp _ _ _2

amplitude will ]De the ellipses (fig. 14)

2
tp

+ _2 + <2 = constant
1 - B2

(3.zs)

The surfaces of constant phase will be

_ : co(t-_) = constant (3.30)

From this it _s seen that the phase velocity along Rp is equal, to the

velocity of sound c. It _s now assumed that the wave field _ is

observed from the point of view of a stationary observer• On account of

the motion of the sound source, Rp and, therefore, the wave phase

will then depend on the t_me t in s more complicated way tha< simple

proportionality to t. Hence the observer will not perceive this sound

field as a field of harmonic vibrations (although in the system attached
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to the source harmonic vibrations were assumed). Nevertheless, if the
changes in the msgnit_de Rp are not too rapid, the frequency _' can
be determined for the stationary observer as the derivative of the phase

with respect to the time

= d-_= _ c _ (3.31)

The computation of the derivative

( 3"_0 ) _l_d (311_)' y ie_d_

dRp/dt, on the basis of equations

dt _ ; "d-Y- - _ (1- _)
(3.32)

when c e

i + _ R-'WP
_' = _ • (3.33)

1 p2

This formula gives an expression for the change of frequency caused by

the motion of the sound source, that is, the Doppler effect produced by

the motion of the source. If the observer is located ahead of the source,

the following is obtained from equation (3.33):

_' - _ (¢ = _) (3.31)1-13

81_d_ If behind the so_roe_

_' _ _ Rp- Z + P (_ = - ) (3.33')

Equations (3.33) and (3.33') are the simplest formulas for the Doppler

effect. Formula (3.33) gives the numerical expression of the Doppler

effect for any position of the observer. If magnitudes of the order of

p2 are neglected, the following is obtained from formula (3.33):

_' = _(1 + p cos e) (3.34)

where e is the angle between the velocity of the source and the direc-

tion OP toward the observer.

_D

_O

16. Sound Source Moving Arbitrarily but with Subsonic Velocity

The computation carried out in the preceding section shows that the

field at a great distance from a uniformly moving source has the form of

a field produced by a point source concentrated at the point 0 (see
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fig. 13)_ and the nature of the source is entirely concealed in the

function Q(8,@) determining the force and direction of the source.

On the basis of this result the theorem of Kirchhoff may be avoided,

which, although it can be formulated also for a nonuniformly moving

surface, obtains in this case a form which is very complicated and

unsuitable for applications. With the assumption that the sot_rce

moires along the trajectory

x -- X(t)_

y Y(t)_
z z(t)y

(3.35)

The true nature of the source will be disregarded and the assumption

will be made that the vibration is produced by a certain volume force

concentrated at the location of the point source. The result will not

depend on assumption (ref. 32). This assumption of the method of pro-

ducing the vibrations is expressed by the fact that in the wave equation

an expression determining the strength of the source is introduced on

the right side:

a_- .1 _2 _Q(x,y,z,t) (3.36)
c 2 _t 2

In order to express the fact that the force

the location of the source, use is made of the 5

in section 6

Q is applied only at

functions introduced

Q(x,y,z,t) = F(t)- _(x - X(t)) _(y - Y(t)) b(z - Z(t))

(3.37)
The magnitude F(t) gives the dependence of the force on the time in

the system attached to the source. Due to the introduction of the

functions, which are everywhere equal to zero except at the points

where their argument becomes zero_ the force Q will be different

from zero only at the place where the source is located at the instant

of time considered. The solution of equation (5.36) is evidently

equivalent to the solution of equation (3.7) with a stationary right

side:

Q(_,_,[,_)= F(_)• _(_) _(_) _(_) (5.37 ')

that is, to the finding of a singular solution of equation (3.7'). The

solution of the wave equation (3.26) with the right side present, as is

known, reads (see section 6)

_(x,y,z,t) ___Q(x',y',z',tr - r/c) dr'
(5.38)
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where r : _(x - x') Z + (y - y')_ + (z - z') _ is the distance from the

sound source [the point (x';y'_z')) to the point of the observer

(x;y;z). The evident physical sense of this solution consists in the

fact that the disturbance formed at the point (x'_y'_z') does not at

once reach the point (x_y_z) but is retarded by the time r/c; there-

fore the disturbance at _he point (x_y_z) at the instant of time t

_s determined by the disturbance st the point (x'3y'3z') which was

present at the instant of time t - r/c. Substituting now the value

of equation (3.37) in equation (3.Z8) yields

_(x,y,z,t)
(3.39)

:$$S,-F-_(x, - Ix])• _(y'- [Y])_(_'- [z])_, _, az'

where the brackets denote that the magnitude enclosed is taken at the

time t - r/c. In order to carry out the integration; new variables

which are arguments of the 5 functions are introduced in place of

X' _y' _Z' :

A = ×' - [x]_

= y, _ [Y]_
c = z' - [z]]

(5.40)

and dx',dy',dz' are transformed by the known formulas of integral

calculus

dx'dy'dz' =

_x'
AZi--_A_ _z'

_x' _y' _z'
B_Z--B_--B_--

_X' _Z'

dA • dB • dC

The determinant

there is obtained

_[x]
I - -ZF-

= I • dA • dZ • dc (3._1)

is readily computed from formulas (3.40)_ and

(X I - X)

r l I[Y] (y, y) _[Z] (z, z)
r -_- r

1 (3.42)

_o
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where [VR] is the projection of the velocity of the source _ in the

direction of r taken at the instant of time t - r/c. The value of I

is now substituted in equation (3.59) and the inSegration with respect

to A, B, and C is carried out. On the basis of the properties of the

5 functions, the result of the integration should simply be equal to the

value of the function under the integral at the point A = B = C = 0

(see section 6), that is,

_(x,y,t) =Z (rF_j-" Ij_A=B=C=O (5.43)

where the sum is taken over the points where A = B = C = O. These

points are easily determined. From the conditions A = B = C = 0 the

following results:

(y, - y) =[Y]

(z, - z) --[z]

(5.44)

By taking the square of these equations and combining term by term,

an equation for obtaining the value of r at the point A = B = C = 0

is obtained. This value is denoted by R. By the method indicated the

following equation results from equation (5.44):

or

(3.45)

f(R)= 0
where

(3.46)

_z- Z(t- cR--_2 - R2(3.47)

Since R > O, only the positive root of equation (5.46) is to be taken.

On the basis of the equivalence of equations (5.44) and (5.46), the sum
l .

over the polnts A = B = C = 0 in equation (3.43) goes over into the

sum over the positive roots of equation (3.46). The distance r : R is

the effective distance. Its physical meaning is illustrated by figure

15, where the trajectory of the source q and the point of obser,_ation

P are shown. If at the instant of time t the source is at point Q,

the disturbance at the point P originates from the position Q', which

it occupied at the instant t - R/c, where R is the distance Q'P; the

instantaneous distance, however, r = _/(x_X(t))2 + (y_Y(t))2 + (z-Z(t))2

is equal to QP. Substituting in equation (5.33) the value r = R yields
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_(x,y,z,t) = _ F(t-_____R/_C)
(3.4s)

where, as is easily verified by equations (3.42) and (3.47),

-<i--7"7.S*=Sll [vs]In =  iIdf] (3.49)

If the velocity of the source is less than that of sound, there will be

only a single positive root of equation (3.46). In fact, in order that

the equation f(R) = 0 have a second positive root, f(R) must pass

throug]_ an extreme value_ that is, df/_ must become zero. From

equation (3.49) it is seen that in this case [_] must be equal to

c, which is impossible. Hence, for v < c,

_(x,y,z,t) = (3.50)

where R is the only positive root of equation (5.46).13 The case

v >c will be considered separately (section 20). From equation (3.50)

it is seen that the wave field for all motions of the point source is

expressed only through R _ and R, but the functions R*(x,y,z_t)

and R(x,y,z,t), since they are obtained from equation (3.46), are,

of course_ different. In particular for a uniform motion with velocity
v along the x-axis

f(s) = x-v - + + -el (3.el)

131n section 5 the solution has the form F(t + R/c)/R*. The dif-

ference between them and equation (3.40) is only sn apparent one. In the

first place, the faotor _ did not enter for the reason that in

section 5 there was no interest in the absolute strength of the source.

Further, equation (3.31) has also a formal leading solution. Thus, in

equation (3.40), Q(x',y',z',t + r/c) can be taken. The chosen sign +

yields, ____ace of equation (3.40), ¢ = F(t + R')/R*_ - pS

R* " _i - p2 = Ii + [VR],/cl, where [VR]' is the value of vR at the

instant t + R/c. In equation (3.46) the sign before R would likewise

change. The value of R would be R" (see fig. 15). From this it is

seen that if equation (3.46) has the solution RI = R, it also has the

solution R 2 = - R". Hence, in order to obtain a lagging solution of

equation (3.46), it is necessary to take R > 0 if starting from

Q(x',y',z',t - r/c) while it is necessary to take R _ 0 if start-

ing from Q(x',y',z',t + r/c). But this root is precisely equal_to -RI.
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From equation (3.46) the already familiar result is obtained

R* = _/_-2 + y2 + z2 (3.52)

(_ _ x - vt

,V"l_ )
The solution obtained (eq. (3.50)) represents the field of a

zero source. By combining such sources, however, with the proper phases

and disposing them according to a known method, a wave field hav_n_ any

directional characteristic can be represented. For example, two zero

sources of the same strength but of oppostie phase placed at a small

distance from each other (Z_ R) will give a dipole.

If the source began to function at a certain instant of time, for

example, t = 0 (that is, if F(t) = 0 for t < 0), there would be present

a wave front, that is, o _ a surface which would be reached by a distur-
bance starting out from the source.

From each position of the source a wave starts out at time t at

the distance R = ct. Substituting this value of R in equation (3.46),

the equation of the wave front is obtained:

{x- X(O)}2 + {v- Y(O_2 + {z- Z(O)_2 = c2t 2 (3.53)

that is, a sphere of radius ct with center at the point where the

source began to function (that is, at x = X(O)_ y = Y(O), z = Z(O)).

Thus, for v < c, the moving source is at all times located within the

sphere formed by the wave front (fig. 16).

The results obtained for the sound field of a moving source are, in

many respects_ in agreement with the known results of Lenard-Wichert for

the electromagn'etic field of a moving poin _ charge (electron).

17. General Formula for Doppler Effect

If the source of sound is assumed harmonic and having in its own

system the frequency _, the form of _ (eq. (3.47)) is restricted:

Jm(t_Rc) i_

= Q" e Q. e (3.54)
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From the instantaneous frequency _' perceived by a certain observer

not moving together with the source, the derivative of the phase

with respect to the time is understood

_, d_ (i ida)= d--t = _ c (3.55)

This formula must be considered as the most general formula for express-

ing the Doppler effect. It was oresented earlier for uniform motion;

it remains true also for the general case of motion. In section 15,

however_ the question of the limits of validity of this formula was not

considered. For an observer not attached to the source, the spectrum

of the wave field _(x_y,z,t), notwithstanding the harmonics of the

source, will appear as continuous and the intensities of the individual

frequencies will be determined by the amplitudes _(x,y,z,_) in the

expression

=_+_ e ia),td_,
(x,y,z,t) ) (3.as)

It may be asked under what conditions the action of this entire

frequency spectrum is equivalent to the action of a single one _' which

depends on the time according to equation (5.55). The answer to this

question is simple and is connected with an analysis of the work of the

sound receiver used by the observer. Let this receiver be a certain

resonator with a ti_e constant equal to T. In such a resonator the

frequencies will be established in time T. If the time dependence

of the force acting on the receiver is written in the form

Q i_'t Aei_'t
_(x,y,z,t) = _ • e = (3.57)

"i 0where _' is the nstantane us" frequency (eq. (5.55)) and A is

the "instantaneous" amplitude (A = Q/R_(t), the dependence of A and

_' on the time may be neglected under the conditions that

(I) A varies slowly by comparison with the changes of phase _'t_

that is,

(2) The frequency _' changes little in the time T

the frequencies are being established

(5.58)

during which

_o
_D

d --i • T << (3.s9)
dt
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From the preceding it can be seen that the Doppler effect may be observed

only for sources with sufficiently large damping (small T). These con-

ditions will be analyzed in more detail; but now, if they are assumed

satisfied, the Doppler effect will be considered for the case of an

observer and a sound source moving uniformly and rectilinearly but at

a certain angle to each other. On figure 17 is shown a source Q mov-

_n_ with velocity _ and sn observer P moving with velocit]_ _-- The

velocity of the observer relative to the source will be _ = V --7. In

order to compute R, equation (3.30) is used. Substituting in R the

value _* and passing from motion along the x-axis to motion along any

direction (which is do_e by simple rotation of the system of coordinates)

yield

(_, _/C')+/Vr2(1 v2/c 2) +(,, _)2
R = (3.60)

(1 - v2/o _)

_ /where r is the instantaneous distance QP = rp - _Q. Now, dR dt can

be computed_ taking into account the fact that both the source and the

observer are moving, so that

(3.61)

rQ _t +_J

A somewhat long but simple computation leads to the following result for

CO''

where the vector

l l ,q
_,=_ _\c_J [_

is equal to

("'-_) + (l - v2/c2)
C

1 - v2/c 2

(_.62)

fr_(l - v2/o 2) (_, V)2+ c2

This is the most general formula for the Doppler effect for a uniformly

moving source and observer. From this formula it is seen that, if they

are relatively motionless (_= 0), _' = _. For a motionless observer

(_ = O) there is obtained

_' -- _ • (3.G2')
1 - v2/c 2

y_ = r (3.63)
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and for a motionless source _ = 0)

_' =m ' ; n =r
r

(3.62")

For an estimate of

then reduces to

dm'/dt and dA/dt let A _ i/r. Condition (5.58)

I_._ldr >> __v (5.58')I < _' or r -_r

If the observation is made in the wave zone, then r >> 2_c/m'; hence

equation (3.58) is satisfied in all those conditions where, in general,

the initial formulas derived for the wave zone are applicable. The case

is otherwise with condition (3.59). If d_'/dt = - d2R/cdt 2 is computed,

with use of equations (3.60) and (3.61), then with an accuracy up to a

magnitude of the first order with respect to v/c and V/c there is

obtained (i - _)
T <<r c (3.59')

2
u t

where u is the projection of the relative velocity on the direction
n

of source to receiver and ut is the projection on the direction per-

pendicular to this line. For a relative velocity u of the order of

c for certain positions (small un) , the mag_itude of the time constant
T should _e much less than r/c and condition (3.59') may be very re-

strictive. When this condition is violated, the sound of the harmonic

of the source itself will be received as an impulse containing different

frequencies continuously distributed.

_o

_o

18. Sound of an Airplane Propeller

The sound of an airplane originates fundamentally from two sources:

the propeller and the engine exhaust. The sound of the propeller like-

wise has a dual character. In the first place, a rotating body, such

as the propeller of a motor, gives rise to periodic changes in pressure

and velocity of the air near the plane and swept by it. These periodic

changes of the air are accompanied by small compressions and rarefactions

which are propagated in the form of a sound wave. The sounds of this

origin are called rotational sounds. 14 In the second place, from the

propeller blade, as from any moving body in the air, vortices are shed

which likewise impart periodic impulses to the medium surrounding the

propeller.

These periodic impulses are the cause of the second sound_ the so-

called vortical sound. In section 25 the origin of this sound and its

14This term was introduced by E. Nepomnyashchii.
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fundamental properties will be considered in detail. For the present,

however, the discussion will be restricted to pointing out the fact that

the frequencies of this sound are very high and are strongly absorbed in

the air so that in observing the sound of a distant airplane only the

rotational sound, and at that its lowest harmonics (and also the lowest

harmonics of the exhaust), are heard. Hence, it will be entirely rea-

sonable to consider in this section only the rotational sound. In fig-

ure 18 is shown the propeller of an airplane and its enclosin_ surface

S on which the disturbances brought about by the motion of the propeller

will be studied. The faces S' and S" of this surface (fig. 18) will

be considered so far removed from the surface of rotation of the pro-

peller that the motion of the gas on this surface may be assumed as

linear (with the exception, of course, of the general forward motion

of the air).

The possible frequencies of the rotational sound will be considered

first. Let the propeller have n blades and make N rotations per

second. It is then evident that at each point on the surface S, due

to the rotation of the propeller, the state will be periodically repeated

nN times per second so that the fundamental frequency (cyclic) of the
rotational sound will be

_0 = 2_nN (5.64)

and its harmonic will be mm = m0m , where

m = 2,3,4,...

The computation of the intensity of the sound and its direction char-

acteristic for these frequencies for a given shape of propeller and

for a given speed presents exceptional difficulties. I_ Hereinafter

the discussion will be limited to the investigation of the most general
features of this sound and to qualitative estimates.

After the control surface S is shifted to the region where the

periodic disturbances have become linear, the properties of the potential

and its derivatives on the faces S' and S" of the surface S will

be considered. A cylindrical system [_, o, X, rigidly attached to the

airplane so that @ = _(6_o,x,t), will be taken as a system of

coordinates.

Since the propeller rotates uniformly in the same plane in which

the angle X is measured, X and t should enter _ only in the com-

bination t - X/m, where m = 2_N = m0/n is the angular velocity of

rotation of the propeller.

15See note, p. 93.
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Expanding
period T = 2_/m 0 yields:

_(_*,o,x,t) = m__=- *m(_,o) " e-im(_ot-n×)

f -im'nX +i_nt

m_-_

in a Fourier series with respect to the time t with

Z (s.6s)

In the following it is sufficient to consider separately each of

the harmonics

_m = _m (_* 'O)ei (°_mt-m'n'X) (5.66)

_0

The theorem of Kirchhoff (section 6) is now applied to the potential of

any of these harmonics and the wave field • st a point P is considered

at some distance from the airplane. According to equation (3.3S),

_, e i (o_mt-kmRp)(
qp,_p,t) = R_ " Qm (5.67)

mm

where _p_ qp_ (p are the coordinates of the point of observation P,

and Qm' on the basis of equation (5.24), is equal to

J(_m _RQ ) -ikm'Z_4_Qm = - ikm Sm
S\ _n _ e

2i_km p -i .%e _ dS
a/1 - _2 J x

• dS+

1 (3.68)

where _ = v/c, v is the velocity of the airplane, km = _n/c, and,

according to equation (S.20), the magnitude A is

Z_- -#£_ + _Q " cos OpQ (5.69)

The symbol Q is a point on the surface S (fig. 18). From the same

figure it follows that

cos0m = cos_ • oos$+ cos(%-%)sine_ • s_nO_ (3.70)
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where h* is tile distance to the control surface, _ = _2 + _2 is the

distance from the axis of the propeller, _p and Cp are the angles in

the polar system determining the position of the point of observation P,

and 8_ and CQ are the same angles for the point Q of the surface

S' (or S"). It is evident that cos 8_ = h_/_p 2 + h _2 and

sin 8_ = p/4p 2 + h_2. Substituting this value of A in equation (3.ii_)

and _m from equation (3.66), the integration with respect to _Q can

be carried out. It is here necessary to bear in mind that

2_

F iz cos (X-X')-im.n. X' -im.nX (3.71)
_0 e dx' = 2_ie Imn(Z )

where Imn(Z ) is a Bessel function of the first order (m • n). With

use of equation (3:71) the following is obtained from equation (3.68)

for the surface S_(_ = h_):

t-°_%-_e _ .Im." _;_

e <1\_7 C--hl_ (5.7z)

2i_km )

ikm *m " cos 8_ + _m
_/_ _ _2

where r0 is the radius of the control surface_ which may be equated

to the radius of the propeller, and the magnitude _R_Qp/_n = _pQ/_< is

replaced for large RpQ by cos 0p. For the surface S2 a similar

expression _ is obtained which differs from equation (3.72) in the

substitution of -h_ for <*. Combining Q_ and Q_ yields

r0i -im'nXP_of_ <k m " _ " sin XQm = _ e p dp • Im. n p2

(. r_ -e,_. L\F] +\.,_- ;_ ikm. co s (_m)l + (3.73)
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On account of the smallness of the magnitude

e iXl and e iX2 may be expanded in a power series in kmh*

e = i+

£1 - _z

km hW, the phase multipliers

(_ - cos e_) + ...

i x_ :_m< O_)+
e = Z- _ (_ - cos "'"

The followin_ is then obtained:

i -im. nXp

%=me

r o

_0 od° ×

Im'n k _I - _2 /jAm(0) + Bm(O) cos E_p +

Cm(O) cos2@_ + '''] J

(3.75)

where

sources distributed in the plane of rotation of the propeller

Am(o) may be considered as the strength density of zero-order

- (@m)2] +

J

the magnitude Bm(O ), as the strength density of dipole sources

Bm(O ) -- ikm [(Wm)l- (_m)2]- |

JJ

(3.76)

(3.77)
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the magnitude Cm(P), as the densit;: of quadripole sources

 2k2
Cm(e ) = [(_/m) 1 h_- + (gm)2 " h_,] (5.78)

and so forth. Therefore, the unknow_ functions @m and b_m/b_ are

calculated now for [* = h_ and _* = - h_. These functions are

independent of each other because the value of any one of them on the

control surface S determines uniquely the solution of the wave equation.

They can be given only in those cases where it may be assumed from some

preliminary considerations that the assumed values of _m and b_m/b_ _

approximate the true values and are thus in agreement with each other.

The computation of these magnitudes presents the fundamental problem for

the computation of the sound of an airplane. 16 It is necessary to call

attention to the following circumstance. In the integral (5.75), the

magnitudes Am, Bm, Cm,'." must not change their signs as functions of

O, at least in the re_cn of most effective values of o (in the working

part of the propeller blade). It is easily seen that the same refers

also to the magnitude Imn(kmP sin 8_/_ _-_-_). In fact,

kmD = 2_nmNo/c = nmv(o)/c, where v(o) is the rotational speed of an

arc of the propeller. The roots X_n of the equation Imn(X ) = O

possess the property that Xmn' >mn, but v/c < i. Hence, in the range

of integration 0 < O < r 0, the argument Imn is less than x_m.

Because of this Imn can be moved outside the integral sign, replacing

o by a certain effective value O = R O. There is then obtained

i-im.r_p {bRosin8"_ "
_m =4-_ e ' _R_Im.n : -- ×

+ Bm • cos 8p + Cm cos 2 + ...

16Attempts to compute these magnitudes have been frequently made
(see the references at the end of the chapter, in particular, the book by

E. Nepomnyashchii, "Investigation and comp_tatio_ o¢ the sound of an air-

plane propeller"). These computations are not_ however, entirely reliable

because they make use of the relations of linear acoustics in the nonlinear

region. In particular, no account is taken of the presence of a constant

air flow_ the magnitude o_T/bt (where e is the air density) is equated

to the pressure p on the blade of the propeller, whereas

p = - o • (v )2/s

and so forth. It is therefore difficult in this way to attain anything

more than agreement in the most general features.
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where Am, Bm, Cm,'.. are mean values of these magnitudes over the

length of the propeller blade. Since the magnitudes Am, Bm, Cm,''"

represent the coefficients of expansion in the small parameter kmh_,

the value of Am among the terms in braces in equation (5.79) should

be predominant; that is_ there is a source of zero order. Hence, the

directional characteristic of the sound of the airplane propeller will

be determined essentially by the factor Inm while the remaining terms

in equation (3.79) will only deform somewhat and displace the directional

curve given by this factor. Since not only do the roots of the equation

Imn(X ) = 0 exceed mn but also those values of X''mn which correspond

to the maximum Imn(X), the expression Imn(kmR 0 sin 8_/_l _ _) will

monotonically increase with increase in 8W to _/2 and then drop to

0 for 8_ = _. Thus the maximum of the radiation will lie at 8W = _/2_

that is, in a plane perpendicular to the line of flight of the airplane

(in the plane of rotation of the propeller). 17

This curve is given in figure 19 (curve a). In fact, there is

generally observed an assymetry of the directional curve (curve b of fig.

19) which indicates that the part played by the dipole radiation can not

be entirely ignored in comparison with the part played by the radiation

of zero order. Both curves refer to a system of coordinates which are

at rest relative to the airplane. Now the intensity in the sound spec-

trum of the propeller will be determined. For this the magnitude Qm

in equation (5.79) has the sense of a volume velocity. Its fundamental

term contains the magnitude Am equal approximately to the sum of the

velocity components of the air normal to the surface S. These velocities

are produced by the compression of the air in the motion of propeller

blades and may be represented in direct dependence on the velocity of

motion of these blades.

Consider the velocity component u(t - @/o3,_,_) normal to the

surface SI. The same expansion (eq. (5.65)) in a Fourier series is

applicable to it that applied for Q, namely_

- -,0,_
O3

im(o3ot-n@)

= _ Um(O,_* ) e

m

(5.80)

W]

_O
_O

17The difference between 8 and 8_ is ignored since these angles

differ by a magnitude of the order of _2.



NACATM1399 95

c_

whence
-inmX

Um(O,_) " e

1 - irmuotu t ,_,o,__=-- - e • dt
T 6O

If the width of the blade at p is equal to _(o), it may be assumed

that u as a function of time has the form of an impulse lasting over

the time T = Z_ = I_o, so that u = u 0 for 0 < I < T and u = 0

outside this interval. Carrying out the proposed inte_ation in e_a-
tion (3.81) yields

Um(O,_ ) • e-_X

0 . (e-i_T _ i) iu0
- T i_ 0 =_--_ e P (3.e2)

From this it is seen that the amplitude of um very slowly decreases

with increasing m so that the spectrum of the sound of the airplane

should be very rich in harmonics, as is actually observed to be the
case. 18

19. Characteristics of Motion at Supersonic Velocity.

Density Jumps (Shock Waves)

Before the problem of immediate interest_ that of sound radiation

from a source moving with supersonic velocity, is Uiseussed, considera-

tion will be given to those special phenomena which arise in the flow

about a body with velocity of motion exceeding the velocity of sound in
the medium c.

The essential difference between a flow with v > c and a flow with

v< c may be considered from the equation for the velocity potential @

describing the flow of a compressible fluid. According to the general-

ized equation of Bernoulli (eq. (1.27')),

yap 1 (v¢)2
w .... (3.s3)

18The assumptions herein were too simplified, of course, to expect

anything more than a qualitative conclusion. The computation of the form

of the impulses is carried out in the book by E. Nepomnyashchii. As pre-

viously pointed out, however, it would be necessary to choose values of

the impulse on a suitable control surface, whereas generally their values

are computed in the plane of the propeller.
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On the other hand, the equation of continuity reads

_y- d±_(oV_) = o (3.84)

:-- c2(since v : -_7@). Noting that _w/_t = i dp _O c2 _O and Vw = --VO

snd in equation (3.S4)expressing _0/_t,V0 in terms of _w/_t,Vw, and
w in terms of @ with the aid of equation (3.83) yields

1 _2¢ A¢ - 1 _ 2
c2 _t 2 2c 2 _ (g7@) _

IV@ V _[_-_ i ]I= 0, - _ (V_) 2 (3._s)

If a local system of coordinates x, y, and z is introduced such that

the axis ox is directed along the normal to the surface @ = constant

(i.e., along the direction of the velocity v at the point considered)

and the axes oy and oz lie in the tangent plane, equation (3.85)
assumes the form

1 - 7) " _ + _ + Tz 2 + c_ " _t_x c 2 _t 2 -
0 (3.86)

If st a, point of the flow the velocity v exceeds the local velocity of

sound c, the coefficient before _2@/_x2 becomes negative so that the

coordinate x assumes, as it were, the same status as the time; the

equation of elliptical type relative to the coordinates turns into an

equation of the hyperbolic type. These two types of equations fundamen-

tally differ from one another. The hyperbolic equation has discontinuous

solutions which are not uniquely determined by the boundary conditions.

A simple example illustrating this fact will subsequently be given. In

fact, in the motion of a body a% supersonic velocity, there arise in the

medium the so-called density jumps or shock waves. These Jumps are

propagated over a great distance from the moving body along surfaces

which for a small magnitude of the jump approximately coincide with the

characteristics of equation (3.86). In the density jump the state of the

medium changes discontinuously. Such discontinuous change is undergone

simultaneously by all the magnitudes characteristic of the medium: the

velocity, the density, the pressure, the temperature, and the entropy.

By studying the propagation of the sound from a source moving with super-

sonic velocity, it would be systematic to start from that state of the

medium which is produced by the motion of the source and to consider the

sound as a small disturbance. However, at this time general methods of

_O

_O
_O
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solution of the problem of the supersonic flow about a body are not

available_ and, therefore_ no theory is available which permits finding,

in this case, the fields of velocity and pressure and determining the

magnitude and position of the density jumps which arise with supersonic

flows. For this reason the discussion will be restricted to the consid-

eration of certain partial problems and to a qualitative analysis of the

phenomena. Consideration will now be given to the simplest cases of

supersonic motion which permit an uncomplicated mathematical analysis.

The profiles of a thin infinitely long wing are shown in figure 20. The

flow in this case is two dimensional and its velocity will be assumed as

v > c. If it is assumed that the wing is thin (and the angle of attack

small), the disturbance imparted by it to the flow r_ay also be assumed

small. Corresponding to this assumption, the potential @(x,y) is

represented in the form

¢ = - vx + _(x,y) (5.87)

where _ is a small correction and the higher powers of it may be

neglected. Substituting equation (5.87) in equation (3.86) and neglect-

ing terms containing higher powers and derivatives of _ yield

(i v_) _2_ _-_ 0 (3.88)- _-_ + _y2 =

where c

Setting

is the value of the velocity of sound in the undisturbed flow.

x = _ • J_2 - I _ =Z >i
c

(3.ss)

gives, in place of equation (5.79),

V- =o (5.90)

As also follows from the general theory, an equation of the hyperbolic

type is obtained. If _ is considered as the time, it coincides with

the e_lation for the propagation of waves in one dimension (y) with a

velocity equal to i.

The general solution of this equation has the form

= q - y) + f2 + y) (3.91)
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The disturbances, giving rise to _, are disposed (along the wing profile)

from _ = 0 to _ = _/_2 _ i and are propagated according to equation

(3.91) without change of their intensity along the lines y = • and

y = - _ (for example, PQ and P'Q' on fig. 20(a)). The assumption that

f2 _ 0 for y > 0 would mean that the disturbance would travel ahead

of the wing at any large distance. This contradicts causality and,

therefore, it is assumed that f2 = 0 for y > 0 and for the same

reasons fl = 0 for y < 0.19 Then

-- fl ('_-y) y>o

and

With this choice of solutions the disturbances concentrate in the strips

OABO' and 0A'B'O' The inclination of these strips _ determined by the

equation

X

y = ±._= + (3.9_)
_2 _ i

so that the angle = AO0', called the Mach angle, is equal to

sin _- 1 _ c (5.94)
v

The form of the functions fl and f2 can now be connected with the

form of the wing profile. Denoting the normal to the surface of the

wing by _, the following condition exists on the surface of the wing:

- v • cos(x,n) + _ cos(y,n) + _ cos(x,n) = 0 (3.9S)

which expresses the fact that the components of the velocity normal to

the wing surface are equal to zero. If the wing profile is thin and the

angle of attack of the elements of its surface is everywhere small,

cos(x,n) "-- 0 and cos(y,n) g i. Hence the condition of equation (3.95)

can be approximately written as

Jr = V COS

y=O

_9

_D
_9

191n this supplementary requirement there is also expressed the

property referred to above of equations of the hyperbolic type.
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The sign

surface.

surface

+ holds for the upper surface; the sign - for the lower

Substituting _ from equation (3.92) yields for the upper

{dfl_ dfl(_)

VY]y=o: dr
- v • cos(x,n) (3.97)

and since cos(x,n) is given on the wing profile as a function of x,

and therefore also as a function of T, there is thereby determined the

potential fl(_) with an accuracy up to an unknow_ constant. In the

same manner there is also found f2(_). From equations (3.92) and (5.97)

an additional velocity on the x-axis is obtained

_ dfi(_ - y) v
..... cos(x,n) (3.95)

aVx _ _V_ 2 - I _/_2 _ i

where cos(x,n) is considered as a function of (T - y).

With the aid of equation (5.85) the change in pressure AP = P - P0

as compared with the pressure in the undisturbed flow P0 can also be
obtained. Thus, for small Ap, from equation (3.83)

v 2Am _ (V_)2 + -- (5.99)
0-7= _ - 2

The constant v2/2 is so chosen that in the undisturbed flow, where

5@) 2 _ v 2 and _9/_t = 0, p = P0" Substituting _ from equation (5.77)

and neglecting higher powers of • and powers of the derivatives of

yield

_ (5.100)
sp= OoV _

whence on the basis of equation (3.78)

0v 2
Ap=

_/_2 _ I
• eos(x_n) (3.i01)

At the point x = 0 (the point of meeting of the flow with the

profile) cos(x,n) _ 0, and at the point of departure (x = Z) cos(x,n) _ 0.

Outside the interval 0 < x < _, cos(x,n) = 0. Hence the pressure Ap

and the velocity Av have the form showr in figure 20. At the point of

approach a discontinuity of the motion occurs• The resistance of a thin

wing computed in this manner agrees well with test results (ref. 34).

Both the pressure Ap and the velocity Av x maintain their values

constant along the line y = ±_, that is, along lines inclined to the

flow by the Mach angle _ (sin _ = c/v).
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The solution presented above, demonstrating the presence of dis-

continuities in the supersonic flow about a body, is suitable essentially

for infinitely small density jumps. The theory of density jumps of

finite magnitude can not be obtained from a consideration of only the

differential equations of hydrodynamics since these equations lose their

validity precisely in the region of discontinuity and must be replaced

by suitable boundary conditions. In order to find these_ a density jump

of the form represented in figure 21 will be considered; equation (3.83)

is the region of the undisturbed medium and equation (3.84) the region

of the jump. Let the jump move with the velocity V in the positive

direction of the x-axis. It is natural to take a system of coordinates

in which the jump is at rest. In this system the velocities of the gas

along the x-axis in re_ions of equations (3._3) and (3._4) will be

Ul= -V
(3.102)

u 2 = U2 - V

where U2 is the absolute velocity of the gas in the region of the jump.

To derive the conditions at the jump it would be necessary to rewrite the

fundamental equations of hydrodynamics in integral form. As was explained,

however, in chapter Y, these equations represent no other than the three

laws of conservation and this fact may be utilized by applying these laws

directly to the region of the density jump. The matter, momentum_ and

energy flows on both sides of the density jump must be the same. Making

use of the expressions for these magnitudes (eqs. (1.9), (i.i0), and (i.ii))

and neglecting for the present the viscosity and the heat conductivity,
the law of conservation of matter is obtained

OlU I = 02u 2 (3.103)

where rI and 02 are the density of the gas before and after the jump.

Further, the law of the conservation of momentum is obtained

OlU2 + Pl = 02u2 + P2 (3.104)

where Pl and P2 are the pressure before and after the jump, and

finally the law of the conservation of energy is obtained

i 3 i 3
plUl + OlElU I + PlUl = [ 02u2 + 02E2u 2 + P_u 2 (3.105)

where E 1 and E 2 are the energy of unit mass of the gas before and

after the jump.

_O
_O
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With the use of equation (3.103), equation (3.105) may be written in

the following form:

!where w = E + P/O
obtained

i 2 1 2

Ul + Wl = 7 u2 + w2 (3.1o5')

is the heat function. From these three equations are

02 P2 - Pl
u I = - -- .

eI 02 - 01
- v (3.1o6)

°i P2 - Pl
u2 : - (3.1o7)

02 02 - D1

and also with the use of the equation for an ideal gas

E=--I •£ w= r p (3.1o8)
T-i 0 /-i0

the relation of Hugoniot 20 (ref. 35) is obtained

(r- l) kO-_ =[ (Pl + P_) (3.1o9)

Equations (3.106), (3.107), and (3.109) permit computing all the data

referring to the density jump as soon as the pressure Pl and the den-

sity of the gas oI ahead of the jump are given, and also one of the

magnitudes characterizing the jump, for example, P2"

In conclusion, the change in entropy occurring in a density jump

will be computed. From equation (1.34) it follows that the entropy of

unit mass of the gas is equal to

S = SO + cvln p_ (_) Y (3.110)

From this equation the change in entropy is obtained

P2 Io2_ ]_ P2 02

S2 - Sl = cvln _i _i) = cvln PU + cpln --Ol

(3.iii)

20This relation was earlier established by Rankin (ref. 36); see also

reference 37.
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If use is made of the relations of Hugoniot, it is not difficult to show

that for s density jump this magnitude is greater than zero so that the

processes in the jump have an irreversible character. It is precisely

for this reason that it is impossible to restrict oneself to the dif-

ferentia1 equations of hydrodynamics which do not take into account such

processes. The motion of the jump, as is seen, proceeds in the direction

of increasing entropy since the gas has less entropy before the jump

(eq. (3.87)) than after it (eq. (3.87)), and the jump moves in the dir-

ection from (2) to (1). The velocity of this motion V = - u 1 is readily

found from the preceding equations if 02 and Ol are eliminated from

equations (3.106) and (3.i09). There is then obtained

2 v2 c2 f P2 )]Ul-- F +(r-i
(3 .I12)

where c is the adiabatic velocity of sound in the gas at rest (eq.

(3.84)). Since P2 > PI' therefore V 2 > c2; that is, the jump always

moves with a velocity greater than the velocity of sound in the medium in

which it originates. The relations herein derived will be used in

analyzing the work of a sound receiver moving with a velocity greater

than the velocity of sound in the medium.

_D

_o

20. Sound Source Moving with Supersonic Velocity and Having

Small Head Resistance

In this section consideration will be given to the radiation of

sound by a source moving with velocity v > c and having a small head

resistance. The theory of such a sound source is, to a considerable

degree, analogous to the theory presented in section 19 of an infinitely

thin wing. The sound source will be imagined as located on the body

(fig. 22). The profile of the body will be given by a curve in a

cylindrical system of coordinates (o,_,X)

The cross section of the body

small.

o = Oo( ) (3.11s)

_0_ will be considered infinitesimally

It is assumed further that the surface of this body or a part of it

performs small vibrations of frequency m. This vibration will be the

sound source. The potential of the flow • will be given in the form

_ = - v • x + _0 + ¢ (3.114)

where v • x is the potential of the undisturbed flow, _0 is the

potential produced by the motion of the body, and _ is the potential
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produced by the vibrations of the surface of the body (it is proportional

imt
to e ). The potential _0 is of no interest since in a system of

coordinates connected with the body it does not depend on the time. ?]

The assumption of the small cross section of the body permits restriction

to the linear theory. In virtue of this the solutffon will be a super-

position of the steady solution and the unsteady sound field. The prob-

lem thus reduces to the determination of ¢. For solving this problem

the method of sources will be used. The field of a point source of

sound moving with supersonic velocity will first be determined and then

a suitsble distribution of these sources over the surface of the _ody of

revolution will he taken. In a system of coordinates attached to the

body let there be a point source at the points g0' n0' {0 lying or' the

surface of the body under consideration. In a stationary system of

coordinates, the coordinates of this source will be

X= vt +_0

Y = 00

z = to (3.11s)

The strength of this source dQ will be assumed as infinitesimally small

and proportional to an element do 0 = 2_o0 • d[ 0 of the surface of the

body on which it is located

dQ = q(t,<0,_0,% ] • d% _(× - vt - %) ×

8(y_ %)(z - {o) (3.11G)

In this formula the small magnitude

dF = q(t,_o,no,_o)dg 0 (3. ii 7 )

has the same meaning as F in equation (3.37). In cr,rrespondence with

equation (5.45), the solution of the point source will l)e written in the
form

Xo(x,y,z,t) = *_![q]dc O (3.i18)

w":ere [q] = q(t - R/c,[0,90,[O) and R and R_ are as previously

detern%ned from equations (3.46) and (3.49]. However, in the case v > c

21The potential _0 way be determined by a method s_milar to that

presented in section l,q for a thin wing. See T. Kdrmdn, reference 34,

paffe 81.
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the previous assertion on the uniqueness of the positive root of equation
(3.46) _s not true. Solv_n_ equation (3.46]

(y - no)_ + (_ - to)2 - R2 --o (3.1z9)

yields

where

x-vt- _

_ - _- z _ - 1

t,O

t_
t_3

_=Y-_o

= z - to (5.z21)

where, as will soon be sho_m, both roots of equation (5.120) are greater

than zero. From expression (3.120) for R _ it is seen that _g must

be greater than e2 so that the entire solution lies within the cone

that is,

_K_ : o2 (5.12z)
_ - 1

The generators of this cone start from the point vt + _0' nO' tO' at

which the source is located, and, as is seen from equation (5.122), are

incl_ned to the velocity v (to the axis _) by the Mach angle

sin _ = S (5.1z3)
V

With the possibility of a disturbance ahead of the excluded source,

a restriction to the region ¢ < 0 (fig. 22) is necessary. 22 But -p_*

for _ < 0 is always greater than R_. Therefore_ R is positive and

both solutions (eq. (3.120)) are lagging ones. The physical meaning of

this double solution lies in the fact that at each point P (fig. 25)

enclosed within the Mach cone two sounds arrive. If at the instant con-

sidered the source occupies the position Q, then Q' and Q" are two

22A similar assumption was made in the theory of a thin wing when

f2 ?or y m 0 and fl for y < 0 were neglected.
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effective positions of the source from which the sound arrives at the

point P at the instant t. At subsonic velocity there _s only one

effective position.

The solution for a point source does not have significance in the

immedffate neighborhood of the source (where it becomes infinite). From

the computations it is seen that at supersonic velocity of the source

there exists not only s singular point but an entire surface (the Maeh

cone) st which the solution becomes infinite. It follows that with

restriction to a point source_ it is impossible to assi_ a meaning to

the solution (eq. (3.116)) not only near the source itself but also near

the Math cone. However, use may be made of this solution for construct-

ing the field of s distributed source and also for a qualitative analysis

of the phenomena for supersonic velocities. "Assuming that q depends

harmonically on the time t,

q = qo(_o,_o,_o)e i_t (3.1Z4)

s solution representing the field of an element of surface of the body

is obtsin_;_d from equation (5.i18)

ff_0 - tmo "5
= _ct_o , . o (3.z2.)

d_ R_ _ + e

where R I and R 2 are the two roots of equation (3.119). This solution

is valid within the Mach cone having its vertex at the point _0,_'0_0 .

The total field due to all the elements of the surface carrying out a

vibration with frequency m will be

[ (t 4F _ -%aa o

_=j _._--Ss_z. e

where the integral is extended over the region

_2 2

_ - i

= x - vt - _0 < 0

° = (Y-_o) + (_- (s.lzv)

It is assumed thst the radiating elements are disposed along rings from

_0 = -Z to <0 = 0 so that in the cylindrical system of coordinates
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6,0,X q0
and setting
yields

depend on @. Beari,'g in mind that d_0 = 00 • dX • dE
q0oo = aO(_0)/2_ , for o0 -_ 0, yield from equation (3.116)

le It R_I ItRc_ 1

- - (3.12s)

+ e

If the length of the wave is much greater than the dimensions of the

radiator (kZ = _Z/c <<i), the phase factors may be taken outside the

integral sign and this yields

_m -

= 1
I"

_/B 2 - i
V '

+ e ao(_"o)d_o

R'_'JJ3 2 - i

(5.129)

The last integral agrees with the integral considered by K{rm_n in his

theory of the resistance of thin bodies at supersonic velocity and has

everywhere a finite value (ref. $4). It may be noted that at a distance

fro_ the Msch cone where R*>>_, the magnitude R_ may be taken outside

the integral sign and there is then obtained a quite simple result

where

i(tj
RI

im - ko -
A 0 (3.150)

fo

The magnitude ao(_o ) must be determined from the condition that the

derivative - _$/_0 for 0 _ 0 should be equal to the velocity of a,

surface element carrying out vibrations with frequency _. The method

for determining a0(_0) was given by Ka'rm_n in the preceding mentioned

theory of the resistance of a thin body of revolution (ref. 34).

From the solution of equation (3.150), it follows that surfaces of

constant amplitude will be the hyperboloids RW = constant, that is_

_2
- 02 = constant > 0 (5.152)

These hyperboloids are represented in figure 24. They asymptotically

touch the Ms ch cone. For subsonic velocity the surfaces of constant

amplitude are ellipsoids (see fig. 14) and for a stationary source they

_D
_D
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are spheres. At a point of space P', lying outside the Mach cone, there

will in genersl be no sound field and at each point P, lying within this

cone, there will be two fields originating from the two effective posi-

tions of the sound source Q' and Q". With the assumption thai the

conditions at which a Doppler effect occurs (see section 17) are sst-

isfied_ the conclusion is drawn that at the point P there will be

received two 'instantaneous' frequencies simultaneously

--co (3.133)

COl _ CO
,9

_'_ - i

_-_ + I
co" = co (3.134)

_2 - i

In this case there thus occurs what might more properly be called not a

Doppler displacement of the frequency but a Doppler splitting. The fre-

quencies co' and co" are easily computed on the basis of formulas for

R1 and R2 (eq. (3.20))

In particular, on the x-axis (0 = O) is obtsined

CO
CO T

co"=-, co
_+l

From this it is seen that if 1 _ _ < 2, then Ico'l >co and Ico"l <co;

but if B > 2, then both frequencies are less than co, that is, in this

case lowered tones (as compared with the initial (co)) are heard.

21. Sound Field of s Sound Source for Supersonic Velocity of Motion

In the preceding section a sound source of infinitely small cross

section moving uniformly with supersonic velocity was considered. With

the sssumption of a source of this shape, the entire problem was con-

sidered linearly; the state of the medium in this extreme idealized

case was represented as s simple superposition of states, one of which
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was determined by the motion of the body (solution of Karman) and the

other by the vibrations of its surface (radiation of sound). For finite

dimensions of the cross section of the body, such simple superposition

does not take place. The translational motion of a body of finite sec-

+ion produces in the medium considerable changes in the density, pressure,

and temperature and leads to the formation of density jumps (shock waves)

of finite magnitude.

Because of the difference in the compression of the stream about a

_.ody st various points of the body, the velocity of sound c is not the

same at all points. As a result the Mach angle, too, z = arc sin c/v,

is different for different points of space about the body. The surfaces

of discontinuity (of the density jumps) do not, for this reason, have

the shape of a cone and only at a distance from the body do they possess

this simple shape. In figures 25 and 26 are shown shock waves arising

during the motion of artillery projectiles of various shapes obtained by

the schlieren method. 73 Thus, the state of the medium near the body

itself is very complicated, and, as has already been mentioned, the

solutions of the hydrodynamic equations for this case are at present

unknown. 24 At a great distance from the body_ however, the situation

is simpler. It may be imagined, at least for explaining the geometric

and kinematic aspects of the matter, that the disturbance at some dis-

tance from the body is the result of the compounding of disturbances

propagated with the velocity of sound from each point of the surface of

the body. In this the differences in the velocity of sound propagation

near the body must be unavoidably ignored, and therefore the assumed

point of view essentially ignores the finite dimensions of the body so

that a point source of sound would have to be considered. This, however_

leads to an infinitely large magnitude of the shock wave on the Mach cone.

Hence, the theory of s point source may be applied to the problem con-

sidered, restricting it, however, to a consideration of the kinematic

side of the phenomenon. Such problems_ for example, as the magnitude of

the shock wave and its change with distance from the body cannot be con-

sidered from such a point of view. With these reservations the preceding

theory (section 20) of the point source may be applied to the problem of

the radiation of a sound source moving in an arbitrary manner. According

to equation (3.48) the field of a harmonic point source is determined by

the potential

_= A0 _ e *

k Rk

230n photographing by the schlieren method see reference 38.

24Except for the case of the flow about a cone (see Ackeret, ref. 2).

_9
_O
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where the magnitudes Rk (in the general case their number also may be

greater than two) are determined as the positive roots of the equation

and the magnitudes RI are determined by the equation ?S

Rk = : R-Rk

(3.l:7)

(5.158)

It is evident that the surfaces

Rk*= o (3.139)

are no other than the surfaces representing the envelopes of the elemen-

tary disturbances propagated from _:he sound source. This makes possible

a simple geometrical construction of the surfaces R_k = O, which are the

surfaces of the potential discontinuity_ that is, of the shock-wave sur-

faces (strictly speaking, there is no justification in considerin6 the

state in the immediate neighborhood of these surfaces since on these

surfaces _ =-).

For this purpose it is necessary to construct a family of spheres

representing the fronts of the spherical waves issuing from the source

at different instants of time and to draw the envelope of these spheres.

In figure 27 this construction is shown for a uniformly moving sound

source: (a) for subsonic velocity (in which case there is no envelope]

and (b) for supersonic velocity. In this case the envelope is a Mach

cone with vertex at the location of the source. From the latter con-

struction there is clearly seen also the twofold character of the field

for v > c: at the point P, at the instant of time assumed on the

drawing, a disturbance arrives from the two points Q' and Q" (behind

and ahead of P).

Density jumps are also frequently called shock waves or ballistic
w_veS.

The suitability of these terms will be understood if the density

9ump is considered relative to a stationary observer or_ in general, a

sound (pressure) receiver. The density jump, moving together with the

25Here Rk* differs from the preceding factor
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sound source, on passing by the sound receiver leads to a discontinuous
increase of the pressure in the receiver with smoother pressure changes
behind the jump. In figure 28 is shownthe pressure in the ballistic B
and nozzle wave N from a 30Smillimeter shell according to a recording
by E. Eksklagon. It is thus seen that the pressure in the receiver will
have the character of an impulse or shock.

The problem of finding the envelope of the elementary disturbances
may thus be considered as the problem of finding the front of the bal-
listic or shock wave. A rational analytical solution of this problem will
also be presented. Equation (3.137) in the general case is transcendental
with respect to R so that its direct solution maybe very difficult.
It is expedient to try to obtain the curves of the intersections of the
wave-front surfaces with somecoordinate plane in parametric form with
R as a parameter. Equation (3.137) is quadratic with respect to x, y
and z while equation (3.138) is always linear with respect to the same
variables. By taking any section of the required surface with a plane,
for example z = z', y can be expressed by equation (3.138) as a func-
tion of x_ z', and R; substituting in equation (3.137) yields a quad-
ratic equation for x. Its roots will be

x = xI

x = X2(R,z')

Substituting these values in equation (3.137) gives

y = Yl(Z' ,R)

y = Yz(z,,R)

The equations x = XI, y = YI' and x = X2, y = Y2

intersection of the shock-wave front by the plane
form.

(3.140)

(3.140')

give the curve of

z = z' in parametric

If the source originated at the instant of time t = 0, the values

of the parameter R for the instant t lie in the interval

O_<R_<c • t

The instant of occurrence is the origin of a special disturbance source

which on being propagated from the point of origin (X(0), Y(O), Z(0)) in

the form of a spherical wave gives an additional sperical wave front

which, generally speaking, is not a surface of discontinuity. At sub-

sonic velocity of motion of the source, the wave front is entirely

formed by this sphere having its center at the point of origin of the

source (fig. 27(a)). An example of such a wave is that occurring at

the instant of discharge of s missile from the barrel of a gun (discharge

sound).

_O
W)
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This wave is calied a "muzzle wave" in contrast with the ballistic

wave which moves together with the missile. Figure 29 shows a sketch of

the muzzle and ballistic waves for a uniformly accelerated motion of s

disturbance source starting at the, point 0 at instant t = O. From

the diagrams shown for t = i, 3, 4, and 8, the reader can follow the

development of the ballistic wave which, in this example, overtakes the

muzzle wave. The cross-hatched regions are those in which there are two

effective positions of the sound source and at which, therefore, there

should be heard the superposition of two sound fields, one starting from

the side of the sound source, the other from the opposite side (see

positions Q", Q', Q, and P in fig. 23).

In figures 30 and 31 are shown the development of a ballistic wave

of an artillery missile for a uniformly retarded (fig. 30) and uniformly

accelerated (fig. 31) motion. 26 Figure 32 shews a ballistic (G) and a

muzzle (M) wave for an accelerated curvilinear motion of a disturbance

source.

26Figures 30, 31, and 32 were taken from the paper of L. Prandtl

(ref. 39); figure 28 from the book by E. Eksklagon (ref. 40).
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CHAPTER IV

EXCITATION OF SOUND BY A FLOW

27. General Data on Vortical Sound and Vortex Formation

The most common reason for the occurrence of sound in a medium is

the periodic motion of bodies immersed in the medium and having a suf-

ficiently high frequency, for example, the vibration of the prongs of a

tuning fork, the rotational motion of the blades of an airplane or ship

propeller, and so forth. The occurrence of sound is not restricted,

however, to only such cases as these. Sound also arises when there is

a constant flow about stationary solid bodies (or, what amounts to the

same thing, in the motion of bodies with constant velocity) when it

would appear that there were no causes that give rise to periodic

phenomena. An example of this type of sound formation is provided by

the whistle of the tension rods of airplanes, the rigging of ships, the

sound of wires and strings ("aeolian harp"), and the whistling in the flow

about angles, slots, and so on. It is important in this connection to

note that the capacity of the string_ for example, for vibratfng plays

a secondary part because these sounds occur also in the flow about non-

yielding solid bodies. The initial causes for the occurrence of sound

in these cases are not connected with the vibrations of bodies but with

the phenomena of vortex formations in the flow of a fluid about bodies.

The corresponding sound is therefore called a vortical sound. The two-

fold origin of the sound of an airplane propeller has already been

pointed out. On the one hand, the sound of the propeller is caused by

the periodic motion of the blades (rotational sound); and, on the other

hand, s flow takes place about the propeller blades which leads to vor-

tex formation and also to the occurrence of a particular vortical sound.
The fundamental laws of vortex formation in the flow about bodies are

now considered in more detail. However small the viscosity of the medi-

um about the body may be, the very existence of the frictional forces

produced by it leads to the formation of vortices in the initially po-

tential flow. In order to clarify this aspect of the problem, use will

be made of the equation of motion of a viscous, imcompressible fluid

(the equation of Navier-Stokes). According to equation (1.15), setting

div v = 0 g_ves

+ (v,v)v = -vp+ divv= 0 (4.1)

The flow about a body of characteristic dimension d is now considered,

and the velocity of the approaching flow is denoted by v. In place of

x, y, z, and t, the nondimensional variables x' = x/d, y' = y/d,
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/ / p'pv 2z' = z d, and T' = tv d are used; and p = and v = v "_'

set up. Equation (4.1) then reduces to the nondimensional form

&re

(v - v'p'+ 1+ " = (4.1')

_q

_D

!

O

where Re is the Reynolds number

Re -

(U = b/P, the kinematic viscosity).

va (4.2)
D

From the hydrodynamic equation thus reduced to the nondimensional

form, it is seen that at large Reynolds numbers Re the last term in

equation (4.1) may be rejected; and, therefore, in this case the viscous

stresses play a vanishingly small part in comparison with the effects

arising from the inertia of the fluid. The equations of motion of an

ideal fluid are thus obtained. Hence, if the approaching flow were

potential, it would have to remain so. This conclusion, however, is

true only at a large distance from the body and is not true in the im-

mediate neighborhood of and behind the body. The velocity v on the

surface of the body itself is, because of the adherence of the fluid,

equal to zero. Far from the surface it assumes a value close to that

of the approaching flow (v' = i). This change of velocity occurs in a

thin layer which is called the boundary layer 27. The thickness of this

layer _ may be estimated from the fact that in this layer the action
of the viscous stresses is comparable with the effect produced by the

inertia. This means that in this layer the last term in equation (4.1)

is comparable with the remaining terms. These latter terms are of the

order of i. Since in the boundary layer the velocity over its thickness

varies from 0 to l, the magnitude of the derivative _2v/hn 2, where

n is the normal to the surface of the body, will be of the order of

v/_2_ and in nondimensional form the magnitude Av = _?v/_n 2 + _2v/_s 2

(s is the tangential length) will be

A'v' = (_2/52)_2v'/_n'2 + b2v'/_s '2 _ Z2/52 (instead of A'v' = Z2/Z 2 = i

outside the boundary layer). From this it is concluded that in the

boundary layer 1/Re -Z2/52 _ i; that is,

5-
(4.3)

In this thin layer the flow may be considered as corresponding to the

potential flow of an ideal fluid. The existence of a boundary layer,

however thin it may be (large Re, small viscosity), leads to essential

changes in the flow behind the body. In figure 33(a) is represented the

pdtential flow about a cylinder and in figure 33(b) the flow as it is

27For details on the boundary layer and vorticity_ see ref-

erences 41 and 42.
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a tuat]y obtained. The thin boundary layer b'b" becomes unstable at

the point b" and gives rise to vortices shed from the body. The

formation oF these vortices may be explained in the following manner:

The stream line a'a"a'" of the potential flow near the surface of the

body is considered. In the region a'a" the stream moves with accelera-

tion, and the pressure at a" drops, as follows directly from the law

of Bernoulli

__ V GP + = constant
0 -7 (4.4)

because of the narrowing of the stream in the region a". On the other

hand, in the region a"a'" the stream moves against an increasing pres-

sure and is consequently retarded. In the ideal case of an absolutely

nonviscous fluid, the particles of the fluid successfully overcome this

rise in pressure, converting the stored-up kinetic energy into potential.

In the presence of friction, however, part of the kinetic energy is

spent in overcoming the forces of friction, and the store of kinetic

energy of the particles is now insufficient for overcoming the increas-

ing pressure. As a result, a reverse flow arises in this region. The

point of occurrence of this flow b" is called the point of separation

of the boundary layer. The picture of the flows that arise here is

represented in more detail in figure Z4. This reverse flow forms a

vortex which gradually increases, approximately up to the dimensions

of the body, and which finally breaks away from the body (fig. 5Z). The

same also takes place at the lower point of separation. The development

of the vortex on one side, however, hinders the development on the other.

Hence, the development of the vortices and their separation occurs al-

ternately, now one side, now on the other side of the body. The separat-

ing vortices form behind the body a double chain of vortices which are

gradually dissipated. This double chain of vortices is termed a K_rm_n

vortex street. The theory of this concept will be discussed subsequently.

For the present, it is merely pointed out that so far no mathematical

computation of the periodic separation of the vortices has been obtained.

By numerical methods, Boltze (ref. 45) has succeeded in showing mathe-

matically the development of a vortex behind the point of separation.

Figures $5 and 36 are photographs of a developing vortex in the flow

about a cylinder and also a K_rm_n street formed behind the cylinder at

Re = 250. Although the frequency of the separation of vortices cannot

as yet be computed mathematically, important conclusions can nevertheless

be derived from dimensional considerations. From the magnitudes charac-

terizing the flow about the body; v, the flow velocity; d, the dimen-

sion of the body; and u, the kinematic viscosity, two magnitudes f

and f' can be formed having the dimensions of frequency

v (4.5)f = x(Re)

f' = x'(Se) v_ (4.5')
d 2

_O

to

tO
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where × and ×' are nondimensional coefficients depending on the

Reynolds number. The first of the frequencies is a characteristic fre-

quency of the possible periodic motions of the fluid at large values of

the Reynolds number when the effect of the inertia of the fluid predom-

inates; the second, on the contrary, is of significance in the case of

predominant viscosity (small Re). Vortices arise only at large Reynolds

numbers and therefore it may be expected that the frequency of separation

of the vortices should be determined by equation (4.5). It may appear

strange that the frequency of the vortices arising exclusively from the

viscosity of the fluid is determined by equation (4.5) and not by equation

(4.5'). This paradoxical character is, however, only an apparent one.

If it is desired to make use of equation (4.5') for determining the fre-

quency of separation of the vortices, then the magnitude d would have

to denote not the dimension of the body but the thickness of the boundary

layer 8. When 8 is substituted from equation (4.3) into equation

(4.S'), a result agreeing with equation (4.5) is obtained for f' It

may be remarked that'equations (4.S) and (4.5') differ, of course, only

in that × and ×' in both cases depend little on Re. This phenome-

non is, in fact, observed in actual cases. The periodic separation of

the vortices with frequency (equation (4.S)) gives rise to periodic im-

pulses of small compressions and rarefactions which are propagated at a

distance from the body in the form of a sound wave the frequency of

which agrees with f. This is the wave which is denoted as the vortical

sound. The frequency of the vortical sound was first investigated by

Strouhal for a vibrating string in an air flow (aeolian harp). From

his tests, Strouhal derived precisely equation (4.5) with x(Re) = 0.18S. 38

The value of the Strouhal coefficient depends on the shape of the body,

on the choice of the characteristic dimension d, and not much (in a

certain interval of Reynolds numbers) on the Reynolds number. For a

sphere or cylinder, d denotes the diameter. For a plate having width

and thickness b at angle of attack _ to the flow,

d = I sin I + b cos _.

For such determination of d, from test data (refs. 33 and 45

For a cylinder: _ : 0.20 in the range I0 S_ Re_ 3.I04
For a plate: × = 0.16S to 0.180 for l0S < Re < 1.8×i0 S (at angles of attack
20 ° to 90o).

The values of × obtained by different authors differ little from

one another. A more detailed investigation of the spectrum of vortical

sound (ref. 45) shows that the equation of Strouhal (equation (4.5)) must

be _eneralized in order to take into account the upper harmonics of the

28This derivation of Strouhal was disputed on the basis that the in-

vestigated string is itself capable of vibrations. However, later inves-
tigations (see_ for example, refs. 4S and A6) confirmed the equations of

Strouhal for rigid bodies where the vibrations are due exclusively to the
vortices.
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fundamental frequency

v

fn = × (Re) _ n n-- I, 2, 3, (4.6)

These harmonics, although weakly expressed_ are nevertheless observed 29

(fig. 37) 30 . The intensity of the Strouhal sound has been investigated

in considerably less detail. According to the observations of W. Holle

(ref. 46) for the flow about thin cylinders (diameter d, length _), the

intensity of the vortex sound at the distance r from the radiator is

equal to

I = _ • ]dvn2 ,db (4.7)
r

where Holle assumes for n the value 7 (in general, according to his

tests, 6 < n < 8) and _ = 5"10 -24 in centimeter-gram-second units.

According to the observations of Yudin (ref. 47) on the intensity of the

sound of a blower, n = 6 is obtained. The same result for n has been

arrived at by Y. M. Sukharevskii from observations of the vortex sound

in a wind tunnel (unpublished computation of the Physics Institute of

the Soviet Academy of Sciences). Nepomnyashchii (ref. 33) from measure-

ments on the vortical sound of a propeller (fig. 38) arrived at the

value n = 4, which corresponds to the theoretical curve 40 log v (fig.

58). In fact, at least for large angles of attack (_ > 20o), the curve

60 log v corresponding to n = 6 better corresponds with the results

of his measurements. With regard to the directional characteristic of

the vortex sound, the observations of Yudin (ref. 47) show that it agrees

with the direction characteristic of a dipole the axis of which is per-

pendicular to the direction of flow about the body (e.g., a propeller

radiates a vortical sound primarily in the direction of its axis sym-

metrical in front and behind). In figure 39 is shown the directional

characteristic for the vortical sound of a propeller. The theoretical

explanation of these laws will be given subsequently. For the present,

the fact is noted that the high degree of dependence of the intensity

of the vortex sound on the velocity of the flow (n _ 6) has often ap-

peared paradoxical because from the dimensions of the magnitudes it was

assumed that, since the intensity of the sound is proportional to the

square of the pressure and pv2/2 is a measure of the pressure, n

should be equal to 4. The error of this reasoning is based on the fact

that the magnitude pv2/2 is a measure of the pressure only in an

29For large Reynolds numbers (Re • 105), the expressed vortical fre-

quency evidently do_s not, in general, exist. The spectrum of the vorti-

cal sound becomes practically continuous and the Strouhal frequency

(equation (4.5)) becomes only a suitable measure for the frequencies rep-

resented in such a spectrum.

30Figure 37 is taken from the article by Holle (ref. 46).
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incompressible fluid. In the wave region far from the body, this pres-

sure, which decreases in inverse proportion to the square of the dis-

tance, is practically equal to zero; but the important part of the pres-

sure, which decreases in inverse proportion to the first power of the

distance, is entirely connected with the presence of compressibility of

the gas or liquid. In general, from considerations of dimensionality,

it can be concluded that n is greater than 4. In fact, the density

of the flow of sound energy is equal to

_2
I -- --

pc

where Jr is the pressure in the wave, 0

c the velocity of sound.

(4.8)

the density of the medium, and

If is measured in units of 0v2/2, then

pv &
I = × "

c
(4.9)

where the nondimensional coefficient X may depend on the Reynolds num-

ber; the Mach number v/c; the ratio Z/r, where Z is some dimension

of the body; and on the observation angles 8, _. Since at large r,

on account of the law of conservation of energy, I must be inversely

proportional to the square of the distance, the following expression

applies for r_ _:

(r) (v)7, V = Z__.22 X' Re, 8, (4.10)
X , Re, c' 8,_ r 2 " c

In place of ]2, it is possible, of course, to take the product Zd.

Further, in the absence of compressibility (c-_), X' = 0 (since the

sound in the absence of compressibility is not radiated). Hence, X'

must be proportional to a certain positive power of the Mach number

(v/c). In this way there is obtained

i = _. _ d 0v 4 fv_ s (4.11)

r 2 c V]

where _ depends on Re and on the angles e, 9, and s > O. The depend-

ence of _ on the Reynolds number in the range where the resistance

of the body depends little on Re must be weak so that physically n.

depends only on the angles and determines the directional characteristics

of the sound.

Additional considerations permit determining also the least value

of s. The sound source may be assumed as a zero-order source (_ does

not depend on 8, _ ), a dipole (_: = _' cos28, where the direction of the

dipole axis cannot be indicated, and 8 = 0], and so forth. It will

now be shown that the zero-order source should be excluded. In fact_
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the strength of a zero-order source Q

Q =_(S) vndS

is equal to the volume velocity

(_.12)

where the integral is taken over the surface S about the source near

the latter itself, and vn is the normal component of the velocity of

the fluid to the chosen surface S. In this region, the fluid may be

considered as imcompressible since the wave length X of the vortex
sound

c_ 1 c d (4 i5)= f X v

(for v< c, × < i) is always much greater than the body. But for an in-

compressible fluid the flow through a closed surface is equal to zero.
Hence, Q = 0. 31

A diople radiation may thus be expected. 32 Since its strength is

is also proportional to the velocity of flow v while the intensity of

the radiation of a dipole source is proportional to the square of it_
strength (i.e., v 2) and to the fourth power of the frequency (f4 ~ v ),

the result that the exponent s in equation (4.11) must be equal to 2

is obtained} that is,

I = _'(Re) cos2 e . Zd, pV6
r2 c3 (4.li)

The magnitude of the coefficient _' cannot, of course, be determined

from dimensional considerations. With regard to the direction of the

dipole axis (8 = 0), it should, at least for symmetrical bodies, be sur-

mised, on the basis of the symmetrical succession of the separation of

the vortices from the upper line of separation and from the lower, that

the axis of the dipole is directed along a line perpendicular to the

flow (see section 25).

31A possible objection to this conclusion is that for the radiation of

sound the compressibility is essential, and that taking it into account

gives Q _ 0. But taking the compressibility into account means exnan-

sion in powers of v2/c_; hence, Q would be proportional to v v2/c 2

and the square of Q proportional to v2v4/c 4. Since the intensity of
a zero-order source is further proportional to f2 ~v 2, there would be

obtained I ~ v 8, i.e., the succeeding term after equation (4.11) in the

expansion in powers of v/c.

32 The same conclusion was arrived at by E. Y. Yudin on the basis of his

measurements of the directional characteristics of the sound of blowers.

:O
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25. Theory of the K_rm_n Vortex Street Computation of

the Frequency of Vortex Formation

Kgrm_n and Rubach (refs. 48 and 49) succeeded in constructing a

theory of a double chain of vortices representing an idealizahion of the

vortex street which actually arises behind bodies moving in a fluid

(see f_g. 36).

The K_rman-Rubach theory refers to the flow about infinite cylinders

and plates so that only two-dimensional flow is considered in a plane

(x_y) coinciding with the plane of the cross section of the body.

Along an axis parallel to the generator of the cylinder or plate, the

flow is assumed unchanged.

The two-dimensional flow of an ideal incompressible fluid may, as

is known, be described by a complex velocity potential %(z), z = x + iy. SS

The components of the velocity v along the ox and oy axes, vx

and Vy, are computed from this potential by the formula

de (4.12)
vx - _Vy - dz

The component along the third axis, however, in view of the assumption

of the two-dimensional character of the flow, is equal to zero. If

is known, the pressure p can also be found. If _ depends on the

time, p is computed from the generalized Bernoulli equation

" --vx + Vy= v

In this expression, R(_¢/_t) denotes the real part of _@/ht.

The complex potential of one vortex filament at the point z = zk will be

S31f @(z,t) = _(x,y,t) + ig(x,y,t) is an analytic function of z, then

and @ satisfy the equations of Laplace, A_ = 0, and A@ = 0, where

the derivatives of _ and 9 are subject to the Cauchy-Riemann conditions:

_/_x = _¢/_y, and _/_y = - _¢/_x. If _ is taken as the velocity poten-

tial, the equation _ = constant will give the streamlines ortho_onal to

the surfaces _ = constant. The velocities Vx, Vy are -_/_x and -_/_y.
Because of the conditions of Cauchy-Riemann,

: + i le-- Vx- iVy

which gives equation (4.12). Equation (4.1A), if ¢ is expressed in

terms of _, reads: P = PO + 0_¢/_t -0v2/2, which agrees with equation
(1.29). For details on the complex potential, see any textbook on

hydrodynamics.
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r - zk)
+k(z)= 2 --7" in (4.14)

where F is the circulation of the velocity and _ any length. The

simple computation of the velocities v x and Vy from this potential

gives the flow about the point z = zk shown in figure 40. The velocity

4_ 2 + v_y changes with the distance r from the axis of thev cylin-x

drical vortex according to the law

v = F/2_r p = _x 2 + y2

similar to the change in the magnetic field about an infinitely long

cylindrical wire. If there are several vortices located at different

points Zl(Xl,Yl) , z2(x2,Y2) , ., Zk(Xk, Yk) , the total potential _ is

obtained by summing over-all @k- The potential @' of an infinite series

of vortices having the circulation F' and located at the distance

from each other will now be considered. In figure 41 are shown two such

series of vortices. The vortices of the upper series are located at

the points z' k = x' k + iY'k, where x' k = _k, (k = O, !1, ±2, -) and

Y'k = h/2. Since the potential @ is determined only with an accuracy

up to a constant, it is possible in equation (4.14) under the logarithmic

sign to divide by any number so that the sum @k may be written in the
form

z - z_]] } F'In Zk - 2_i

k=l

k=l

(z - z6) ---in I

+

(4.15)

and, because of the known representation of the function sin(_z)

_D

_D

sin _z = _z

k=l

(4.16)
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there is obtained

¢, _ r' _ sin _ (z - z6) (4.17)
2_i Z

In the same way, the following expression is obtained for the second
series of vortices:

_,, r" _ (z z") (4.18)
- 2_i in sin _ 0

The velocity of motion of the vortex chains will now be determined. It

is readily seen that one chain cannot move. In fact, all the vortices

are under the same conditions and for computing the velocity of motion

of the chain it is sufficient to compute the velocity of any of the

vortices. The latter is equal to the velocity resulting from all vor-

tices except the one considered since one vortex filament does not by

itself give a forward velocity. In view of the symmetry, however, it

is evident that the vortices situated on the right and left sides of

the vortex under consideration impart to it equal and opposite velocities

(this is easily verified by the equation v = -d@'/dz, if the potential

of the vortex under consideration is subtracted from equation (4.17)).

In the presence of two chains_ conditions are different. In this case

the total potential is given by

= _, + @,, r ' in sin _= 2_--7 y (z- z6)+

r " in sin _ z"]
2_i y (z - o" (4.19)

and the complex velocity will be

d@

vx - ivy = - d--_= r' _ (z - z$) -2_i cot

cot-_(z - z") (4._o)
0-2_i

The vortices of each of the chains will move in the identical

fashion; but since the chain itself does not move 3 the first chain will

be displaced only under the effect of the second, while the second only

under the effect of the first. The velocity of the first chain is

therefore obtained if the velocity produced by the second chain is com-

puted at the point where some vortex of the first is located (for example,

z = z$). The velocity of the first chain will thus be

V' - iV' : r" cot _ (z$ - z_) (4 21)x y 2_i

and of the second

r!

V"x - iV"y = + _ cot -- (Z ,z'_ 0 - z"]O. (4.22)



122 NACA TM 1599

In order that the chains move without change of the relative configura-

tion, it is necessary that

; -- _--- TV ° TT

Vx iV} Vx - ivy (4.25)

that is, F" = -F' If it is desired that the direction of the circula-

tion correspond with that shown in figure 41, it is necessary to take

F" = F > 0. Assuming further that the chains move parallel to themselves,
IT

it is required that V} = Vy = O. This condition permits determining
the magnitude of the shift of the vortices of one chain relative to the

vortices of the other. When this shift is denoted by b and the dis-

tance between the chains by h (see fig. 41), the expression

z6 - z_ = b + ih is obtained. In order to determine b, it is necessary

to equate V'. to zero, that is, to the imaginary part of equation (4.21)
or equation (_.22). For this it is necessary to make use of the equation

bO

_O
_O

where

sin 2X sinh 2Y
cot (X + iY) = cosh 2Y - cos 2X - i cosh 2Y - cos 2X (4.24)

cosh _ = (e_ + e-_)/2, sinh _ = (e_ - e-_)/2, tanh _ = sinh _/cosh

After simple reductions there is obtained from the condition V} = V" = 0Y

2rib

sin Z - 0 (4.25)

that is, b = 0 or b = Z/2. In the first c_se the vortices of the two

series are one above the other; in the second case they are arranged in

chess order as shown in figure 41. Karman and Rubach (ref. 48) have

shown that the first arrangement (b = 0) is not stable, while the second

one (b = Z/2) is stable for a wide class of disturbances if

that is,

cosh (-_). = _/_ (4.25')

h
i = o.zs

In this way the ratio h/_ is determined. The obtained picture

of the disposition and motion of the vortices very nearly corresponds

with what is observed in tests on the flow about cylinders and plates
(see fig. 56). In particular, experiment confirms the value of the

ratio h/l given here.

a T * ! • I!When the real p rt Vx of the complex velocity Vx - iVy (eq. (4.21))
is computed for b = _/2, the velocity of motion of the vortex street
is obtained

u=v' r r
x : _ tanh = (4.26)
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With the aid of the law of the conservation of momentum applied to the
J

approaching flow, the body, and the vortex street behind the body, Karman

and Rubach (ref. 48] see also ref. 49, the hydromechanics book by Kochin,

Kibel, and Roze) succeeded in establishing a relation between the coef-

ficient of head resistance of a body Cw and the ratios Z/d and u/v,

where d is the diameter of the cylinder or the width of the plate and

v is the velocity of the body. At the same time_ they identify the

street arising behind the body with the infinite vortex street just con-

sidered (fig. 42). Very good agreement is obtained with test results

as illustrated in the following table:

Bedy

Cylinder
Plate

u/v Z/d
0.14 4.3

.20 5.6

h/Z Cw

Theory Experiment Theory Experiment

0.28 0.28 0.91 0.90

.28 ._0 1.61 1.54

The determination from this table of the ratio u/v permits also com-

puting the Strouhal coefficient × in equation (4.5) for the frequency

of the vortex sound for the cylinder and the plate. Thus, in a system

of coordinates in which the body is at rest_ the vortex street moves

with a velocity, equal in absolute value to (v - u)_ in a direction

opposite to the motion of the body (fig. 42). When the vortex street

is displaced by _, the entire picture of" the vortex motion repeats

itself. Hence the period of the motion is T = Z/(v - u) and the

(fundamental) frequency will be f = (v - u)/Z. After each time inter-

val T, there occurs behind the body a new completely developed vortex

pair. Since it is by these vortices that the vortex sound is generated,

the frequency of the vortex sound should be equal to

f v-u ( __)dv

whence

×-- 1- y (4.2s)

Z/d are substituted from the table givenWhen the values u/v and

previously, × : 0.20 (for the cylinder) and × : 0.14 (for the plate)

are obtained, which are in very good agreement with the experimental
t s

data previously given. In this way the theory of Karman and Rubach

connects the computation of the head resistance of a body with the com-

putation of the formation of vortices arising behind the body.

24. Pseudosound. Conditions of Radiation of Sound by a Flow

In practice it is often necessary to deal with a sound receiver

under conditions where the receiver is immersed in an unsteady flow,
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that is, in a flow the pressure and velocity of which vary not only in
space but in time. Examples of such flows are a wind which constitutes
a turbulent flow possessing a certain meanvelocity, the stream of water
in a ship's wake separating behind a ship or from someprojecting part
of its body, and so forth. An idealization of such wake is the K_rm_n
vortex street which moveswith the velocity u = F/2 _ so that the

pressure and velocity of the flow at each point vary in time with the

period T = Z/u. The changes in pressure and velocity of the pressure

fluctuations in the sound receiver are generally considered as acoustic

interferences. From this point of view the subject will later be con-

sidered in the section on the wind shielding of receivers. For the

present, however, the problem will be presented with special interest

placed upon those sounds which are produced by this flow in the re-

ceiver. If the frequency of these impulses is sufficiently large, the

receiver in such unsteady flow will "hear" a sound (or noise, depending

on the spectral composition of these pulsations). Here those additional

sounds which may arise from the vortex formation in the sound receiver

itself are neglected with the receiver being assumed ideal in this respect.

The effect of the pulsations existing in the flow (on the receiver) may

be inseparable from the effect of a sound of similar spectral composi-

tion. In both cases, the receiver will receive a sonic effect. The

sonic vibrations of the medium, however, and the pulsations of the un-

steady flow are physically widely different. In the first case it is

a question of the small changes of state of the medium associated with

its compressibility. The sonic vibrations are propagated with the veloc-

ity of sound, and this velocity is determined by the elasticity of the

medium (c2 = dp/dp). In the case of pulsations in an unsteady flow, the

compressibility (if the velocities in the flow are much less than the

velocity of sound) plays an entirely secondary role. The motion of the

fluid may be assumed as entirely incompressible and still the pulsations

of pressure and velocity can take place and will be received by the

receiver as a changed pressure. The velocity of propagation of these

pulsations bears no relation to the velocity of sound and is equal to

the mean velocity of the flow. The second difference lies in the fact

that the sound waves are subject to the principle of superposition (be-

cause they may be assumed as linear vibrations of the medium), whereas

the pulsations of velocity and pressure in an unsteady flow represent

a twofold nonlinear phenomenon and are not, of course, subject to the

superposition principle. These physical differences make it necessary

to term the sound received by a receiver immersed in an unsteady flow

a "pseudosound." It should be borne in mind that an unstead_ flow may

be the cause of the occurrence of the usual sound propagated with veloc-

ity c. An example of this may be provided by the same vortex sound
which arises in the flow about bodies. The conditions under which sound

is produced by a flow will be considered subsequently.

_O
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What has herein been said with regard to the sound of an unsteady
r f

flow may easily be illustrated by the example of the Karman vortex street,

which may be considered as one of the simplest schemes of nonsteady

flow. For this purpose, the velocity and pressure in a Karman vortex

street will be computed. The pressure receiver will be assumed at rest_

so that the computation will be carried out in a system of coordinates

in which the vortex street moves with the velocity u =r/z _Y. In

this system of coordinates, the coordinates z$ and z8 (of eqs. (4.17),
(4.18), and (4.19)), distinguishing the positions of the vortices of the

first and second street, will be functions of the time

z_ = ut + i _
2 (4.29)

/zS= ut- i_2

From equations (4.19) and (4.20) there follows:

-u :u (Vx-
(4.so)

The pressure p, on the basis of the Bernoulli's equation (4.13), is
equal to

v 2

P = P0 + pUVx- o 7 (¢.3l)

Further, from equation (4.20) for r' = -r"= -r we have

r

v x iVy - 2_i cot T (z - z_) 2_ir cot y_ (z - z")o (4.32)

When equation (4.24) is used for the determination of the real and

imaginary parts, the following expressions are obtained from equations
(4.32) and (4.29):

r ._ sighT_ (Y+_h)
( _) + cos T2_ (x - ut)k _

sinh _ (y - h )

osh l
c -- Y- _)- cos 2_( h ' T (x- ut)J

(4.3_)
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F
r 2_ (x - ut) j 1

Vy = -_ sin _- sh y + + COS -_- (X - ut)

cosh--f- y - - cos -_

(4.33')

In view of the complexity of the equationsj the pressure p will be de-

termined for two extreme cases: (a) on the axis of the street (y = 0), and,

(b) outside the street, for y > _ > h. In the first case from equations

(4.31), (4.33), and (4.33'), the following expression is obtained when

F/2_ = _ and cosh(_h/_) = _/_ are taken into account:

4 + 2 sin 2 _ (x - u
40u 2

P= P0 + l- -- -_22_-- -__{
cos2 2__ (x - ut) cos T <x - ut)|

i - Z

cosh m . i- 9

From this equation it is seen that the amplitude of the variable pres-

sure on the axis of the chain is of order of magnitude equal to Ou2_

and the fundamental frequency of vibration of this pressure is

m = 4_u/_ = 2_ 0 (m 0 = 2_u/_ is the fundamen%al frequency of the chain).

For large y, the terms of the order (e-2_Y/Z) 2 and higher being neg-

lected, there is obtained

_ (x - ut) + • • (4._5)
P = P0 - 4pu2e Z _ cos _-

As is seen from equation (4.55)_ the pressure gradually approaches P0_

its amplitude is now equal to 4_ 0u2e-2_Y/_, and the fundamental fre-

quency _ = __. The spectrum of the vibrations depends essentially on
o

the position of the receiver in the street; at the depth of the street

the predominating frequency of the pseudosound is 2m 0 and outside it_

_0"

It should be observed that this computation of the pressure refers

to an ideal receiver which does not introduce a distortion in the flow.

A real receiver situated in a flow unavoidably changes it near the body

of the receiver. The pressure received by the receiver will depend not

only on what occurs in the flow itself but also on the character of the

flow about the receiver. For this reason it is necessary to take into

account the precise manner in which the pressure distribution of the

flow changes when the receiver is introduced.

_3

_o
_3
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Since the computation of such distortions is practically nonrealiz-
able, the discussion must be limited to approximations. The equations
of hydrodynamics

p + (7,v _> = - vp (4.36)

permit writing down for the pressure the following equation, which is

valid for the order of magnitude considered:

p = _ 5v _ $ BpvSv + constant (4.$7)
T

where 5v is the magnitude of the velocity pulsations in the flow, T

the period of these pulsations, _ and _ numerical coefficients, and

Z a length determining the gradients (for example, _ ~ p/_). If the

linear dimension of the pulsations is A, T = A/v. In the flow itself,

evidently, I = A, so that both sides in equation (4.37) are of the same

order (provided the flow is not near the steady condition) Near the

body of the receiver, the characteristic length determining the gradients

will be either A or a dimension of the receiver d, if d < A. In

the first case (d>A), there is obtained from equation (4.57)

p = (_ + _)pv_v (4.3s)

in the second (d << A):

d

p : (_ • _ + B)pv_v• _pvsv (4.3s)

The coefficients _ and _ depend on the character of the flow and on

the shape of the receiver body because it is a function of the pressure

near the receiver. An essential conclusion, important for the wind

shielding of the receiver, is that in the case where the dimensions of

the receiver are very much less than the dimensions of the pulsations

the receiver will register the pressure changes which are produced not

by the local acceleration _v/_t but by the change in the aerodynamic

pressure pv2/2; that is, the situation would be that which would be

obtained for a slow change of velocity of a constant flow. In this

case, therefore; it is permissible to consider the flow about the re-

ceiver as a constant flow and, since the pressure distribution on the

receiver is known for such flow

p = ×. _ (4.40)
2

(where _ depends on the point of the surface of the receiver), the

changed pressure may be computed by the equation

5p = k pvbv (4.41)

(Sv is the pulsation of velocity). In the case d > A, such simplified
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"quasistationary" consideration is no longer possible. This case will

be considered in more detail in sections 29 and 30.

The pressure pulsations computed previously, which have been termed

pseudosound, are due to the motion of an incompressible fluid. The com-

pressibility could have been taken into account as a further small cor-

rection of the order of u2/c 2. The question may be raised, however,

whether it is possible that behind these small corrections there is

nevertheless hidden a true sound propagated with its characteristic

velocity c. The answer to this question must be given in the negative.

If the receiver moves together with the street, that is, with velocity

u, all the magnitudes will become constant. In such a system of co-

ordinates, the flow of the vortex street becomes stationary. It is now

shown that if there exists a system of coordinates in which the flow is

stationary, such flow cannot radiate sound. The possibility of reducing

the flow to a stationary form means that all the magnitudes characteri-

zing the flow depend on the time only through the combination x - ut,

so that by taking the new system moving with velocity u (x' = x - ut)

a stationary flow is obtained. Hence, the potential of the velocities

@ will likewise be a function of (x - ut) (even if the compressibility

of the fluid is taken into account); that is,

@ = @(x - ut,y,z)

This potential is expanded into a system of cylindrical waves passing off

from the flow

@(x - ut,y,z) = 2 C(_'p)ei_(x-ut)Ho(PP)pdpd_ (4.43)

where p = -/x 2 _ z2 is the distance from the axis of the flow, H 0 is

a Hankel function, and _ and p are parameters of the expansion.

Each of the individual cylindrical waves

@c_(X,p) = C ei_(x-ut) KO(_O ) (4.44)

for large O assumes the asymptotic form:

i_(x-ut)+ipp C ei(_x+pp )_i_ t (4.45)
_c_(x,p) = C e _ = _ .

where the frequency _ = _u. But for sound waves the phase velocity is

c; hence for these waves

2 + B2 = _2 = _2 u_2
c2 c2 (4.46)

_D

_D
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[_ follows that if u < c, then I{ is imaginary and therefore +he vi-

brations @_ damp out exponentially with in:_reasing distance from the

flow; in other words_ for a flow velocity less than the velocity of

 ound, the sonic field in the wave region (If IP>> l) is equal to  ero.

For supersonic velocity (u > c), equation (4.,I/) is possible also for

real _. Since _/.< = tan_ _ where g is the angle between the normal

to the wave and the flow velocity_ the following expression is obtained

for u > ,_ (eq. 4.47)):

sin _ : u (4.48)
C

thai is_ radiation is possible only under the Mach angle. This result

has already been obtained by a different method (of. section _0). From

this it is seen tha_ a flow moving with subsonic velocity may radiate

only in the case where it cannot be made stationary in any sysiem of

coordinates. As a particular case_ it them follows that the infinite

K_rm_n vortex street nannot radiate sound. Its entire field_ even in

the case of large frequencies u/I_ will be pseudosoni_.

25. Vortex Sound in the Flow about a Long Cylinder or Plate

The occurrence of vortex sound in the flow about a body of simple

shape_ such as a cylinder or p]ate_ is now considered in more detail.

Figure 427 shows a section of the cylinder under consideration and the

vortex street obtained behind it. A system of coordina*es _T]_< wi]l

be taken in which the body is at, rest while the air moves with veio;ity

v _m the direction of the < axis. If in the stationary system c f

:oordinates the velocity of the vorti,:es in t}_e street is u_ this

v:,J]ocity in the chosen system of coordinates will be V = v - u (of.

section 2S). The continued existence of the Karman street is maintained

by the periodical separation of vortex filaments from the edges of the

body in the flow. If the period of the street is denoled as previously

by Z_ the frequency of the vortex separations_ as has already _een

_xpZ_ined i_ section _,,_ (ef. eq. (,_._7)), is equal to

V

f : v- u_ × .-
d

At the distance_ for example_ Z/2_ from the body the formed vortices

turn into a regular Karm_n street and move on uniformJy with velocity

V = v - u. Hen,_e the state of the flow in this region (< > Z/2) will

depend on the time through the combination {- Vt; and it! agreement
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with what was said in section 24, the occurrence of vortex sound will
be entirely due to the period lo cener_::tion of vortices about the body
(the region to the left of O'0" in fig. 42). It has already been shown
(section 22) that the w<_ve length of a vortex sound k = i c d is much

K V

greater than the dimensions of the body d. Because of this circumstance,

a region can be drawn about the body in which the motion of the fluid

may be considered as incompressible, the more so as the distance from

it is increased, so Lhat the linear'equation for the potential _, con-

sidered in section 6 (see eq. (1.94)) may be considered as valid

a_ 1 _ 2_ 1 _32_ = o (4.5o)

c2 _t2 _i - _2 c _t ' _<*

where

/-,71_  -vt,
The linearity of the phenomenon is attained in that re_ion where the

second term of the Bernoulli equation p = p_/_t - p(V_)_2 may be

neglected. If, for t_e purpose of an approximatioD, the relations

existing in the K_rm_n street are considered, it may be assumed on the

basis of equation (4.35) that the second term p(V_)_/2 is small in

comparison with the first for the distances f<om the axis of the street

H satisfying the inequality l/2A/_ >>e-Z_H/_, which is the case for

H _ Z/2. Actually the vortices do not break away from the body in an

entirely regular manner so that in the spectrum of the vortex sound

there are present, in addition to the fundamental Strouhal frequency

f, also other frequencies (upper harmonics of f and sound noises).

Consideration is restricted to the fundamental frequency f which

dominates in intensity and corresponds to the formation of the ideal

Karman street. For this reason, only that part of the potential

will be considered which depends harmonically on the time with frequency

f = _ v/d. The corresponding wave number 2_f/c will be denoted by

k(k = 2_f/c = _/e). A certain control surface S is now passed about

the body and the K_rm_n street so that near the body it goes through the

previously mentioned region where, on the one hand, equation (4.49)

holds and, on the other hand, the motion of the fluid may be considered

as incompressible. Ahead of the body, this surface will be considered

a plane AB continued by the planes AC, BD (see fig. 42) covering the

vortex street. Further, it is evidently sufficient to consider a seg-

ment of a cylinder of length (-L/Z< _ < L/2) since the state along the

cylinder does not vary and the'end effects will be neglected. If the

values of the potential and its derivatives on this surface are known_

applying the theorem of Kirchhoff (eq. (I.i0_)) generalized for equation

(4.49) gives the value of the potential at any point of space. The

integral over the chosen surface breaks up into two essentially different

parts: the integral over the surface O"BAO' lying i_ the region

_D

_O
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without waves, and the integral over the planes O'C and O"D, enclosing

the K_rm_n street and lying in a considerable part of the wave region.

The values of the potential _ and its derivatives on the first of the

aforementioned surfaces may be replaced by the values {0 representing

the motion of an incompressible fluid. The integral over AB then

drops out since this surface is drawn through the undistributed flow

where 40= O, and there remain the integrations over A0' and BO".

On the planes O'C and O"D_ passing to infinity_ the potential _ may

be represented in the form of the sum of the potentials @$ and @.
S J

The first represents the potential of the Karman street, and its integral

vanishes in the wave region (the street does not radiate). The second,

_', represents the part of the wave field due to the shed vortices. The

integral of this part will give at a point of observation P a certain,

in general nonvanishing, result which will be denoted by _. If the

part of the field at the point P due to the integration over A0'

and B0"'is denoted by _ the following is obtained for the wave field

at P: _p = _ + _. Since the surfaces of integration A0' and B0"

pass near the source, the integration over them should give the princi-

pa) part of the field _. The field _ however_ having the same

physical cause as _, cannot possess symmetry other than _ (they

are both produced by the same incompressible motion of the fluid near

the cylinder). Hence_ the magnitude _ is at least of the same order

as @_ and has the same symmetry. Therefore_ it is sufficient to

compute _ for estimating the order of magnitudes and determining the

symmetry of the field (zero source or dipole_ etc.). This field is ob-

tained by the application of theorem (1.108) to the surface A0' and

B0"; that is_

e imt _)@0 -ikR

_ = -_ / d_ d_ e R_ - 4 0 _ \---_j _

- _ _=H

dg d_ _

- 2

(4.Sl)

where _i and _ are the coordinates of point A and point 03 respec-

tively, so that "[2 - 61 _ Z and H _ I/2. It will now be assumed that

the symmetry in that region where the vortices are generated for the

part of the flow having the principal frequency is the same as the sym-

metry of the flow in the developed Karman street; that is, it is assumed

that the vortices are developed in alternation_ first on the upper' edge

of the body then on the lower_ with a phase shift _ (this more descrip-

tive requirement is somewhat more rigid than the requirement just formu-

lated for the component of the motion having the frequency f, but from



13_: NACA TM 1599

the second the first necessarily follows). This symmetry is characteri-

zed by the relations $4

¢o(_,_,_)n:H: -¢o(_,_,_)_:_H (4._2)

and leads, to a dipole radiation with a dipole the axis of which is per-

pendicular to the flow (plus higher multiple radiations the intensities

of which will decrease (kZ) 2 times with increase in the multiplicity of

the poles). In fact, if in equation (4.51) e-i_/_and _(e-i_/R*)_

are expanded in a Taylor series in powers of k/{<<l and r _ the

following expression is obtained from equations (4.SZ) and (4.55):

el(_t-_) _R
_:- _R_ • _-_• ik_ ×

The magnitudes _@ /_ and %/H are proportional to v_ and their0
mean values differ from v only by a factor. The magnitude H is ap-

proximately equal to Z/2_ __ - _i _ Z. Finall_ %R/_ differs from

cos 8 only by quantities of the order of v2/cZ_ where 8 is the angle

between the 9-axis (axis of the dipole) and the direction to the point

of observation P. In place of equation (4.54), the following may

therefore be written:

ik_, • v e i(_t-kl_) (4 55)
L_ 2 cos O

P = - 4_ r

where _ is a numerical coefficient << i (representJ_ig essentially

the mean value of" the nondimensional velocity I/v'%@O/']_ on the

54The sym_aetries of the Ka_mmn street corresponding to these rela-

tions are easily verified if it is Oorne in mind that the potential of

one vortex chain extending over the length y' = h/2 is symmetrical

with respect to the substitution of,, -(y - h/2) for (y - h/Z), and the
other_ extending over the length y = - h/2_ is symmetrical with re-

spect to the substitution of -(y + h/2) for (y + h/2), and that the

phases of the potentials along the x-axis for the fundamental frequency

are displaced by a half period.
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oq

Dq
4_

L'q

_]-uxis _n the' plane A©). The energy flow N in a system of coordinates

in which the medium _s at rest and the body moves with velocity v is

now computed. According to equation (1.60), this flow is equal to

0a_'k II 2-,. ion' (_.v_ _ _v. _) _ vR • (4.56)
N- 4 2

is the frequency which has been changed because of the Doppler

- _ - _ cos (4.5v)

Since the quadrupole radiation was neglected, there is no point in re-

taining higher powers of v/c in substituting @ from equation (4.49)

into equation (4.50). Neglecting these terms yields:

N - so
r 52_r_ c

and the total energy radiated per second will be

I = N r 24_ c

Notin:< that _ = 2_,f _ 2_v (! - u/v), where u is the velocity of the

vortices, ,gives

N = x2a'2c°s28 0v6 L 2 i - "

2r 2 cS

(4.58 ')

I - 5 L2 - (4.59')

where, according to the table given previously, for the cylinder

(i - u/v) = 0.86 and for the plate = 0.80. The equation obtained

earlier from dimensional considerations (see section 2_) is again ob-

taSned. The direction of the dipole axis is now fixed; however, the

axis extends perpendicular to the direction of the flow. It is seen

further that the intensity is proportional to the square of the length

of the segment of the cylinder (or plate). According to the observations

of W. Holle (ref. Ag) for small aspect ratios (L/d_ 15), the intensity

of the sound is proportional to _ power of L, near 2. For L/d > 30_

according to reference ¢<, I is proportional not to L 2 but to Ld.

The essential point evidently is the fact that for large L/d the co-

herence of the radiation by the individual parts of the cjinder is dis-

rupted. This consideration is very likely if it is remembered that the

long vortex filaments, as they are considered in the K_rm_n theory, are

not very stable and break up into certain segments of length AL. So

55
7Isis assumption soul?, <_:_verified b., experimerztal ck,eck.
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The intensity will then be proportional not to L 2 but to

L Z2L2A_ 2 = _ =

where ZXL does not now depend on L so that ZXL = _d, where p is a

certain numerical coefficient depending in general on d/L. For medium

values of the aspect ratio L/d, _ = L/d; and for large values of L/d,

= constant.

Thus in place of equations (4.52) and (4.53), the following will

apply for long bodies;

(l_ = _ c_ ,_pcosZe (4.58")
9r 2 c3 Ld i -

(I 2_ _2B, Ld i - (4.59")
= _ c5

If the results of the previously mentioned tests of Holle are used_ it

is to be expected that p = L/d for L/d ~ i0 and _ = constant for

L/d > 20.

Both from the earlier derived equations and from those now obtained_

it follows that the intensity of the vortex sound is proportional to

the density of the medium p and inversely proportional to the cube of

the sound velocity. Hence the intensity of the vortex sound, for other-

wise equ i conditions, is in water i0 times as great as in air. When

the intensity in decibels is expressed by the ratio to the threshold

pressure ?×i0 -4 bar, there is obtained

N(db) = 80 + l0 log Np__£c (4_.60)
4

According to the results of W. Holle (ref. 46), the intensity of the

vortex so_md N is 80 decibels for a cylinder of length L = 22.5 centi-

meters and diameter d = 1.2 centimeters, for v = 55 meters per second at

the distance r = I meter (and cos 0 = i). From these data and equation

(4.58'), the value _E_/2 = i0 -5 is obtained, whence for _ _ i0

there is obtained _ = 1.4-10 -2 . This value is in good agreement with

the initial assumptions of the theory. In fact, _ essentially reduces

to the value of the ratio v./v at the distance y = Z/2 from the street.

According to equation (4.33')_ at this distance

Vy/V ~ -_ / 2e -_
= ue v = 0., = 10 -2 .

_O
_f

_D

26. Remarks on the Vortex Noise of Propellers

Tests show that the vortex noise of propellers has a spectrum in

which one of the frequencies stands out relatively strongly, so that the
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spectrum consists of a sharp peak on a diffused background (fig. 43).

This characteristic of the vortex noise becomes understandable if account

is taken of the fact that its intensity _ncreases very rapidly with the

velocity (as v6). This noise may, in fact, be considered as generated

by the vortices shed from the different parts of the blade. A concep-

tion of the spectrum of this sound can be obtained if the individual

parts of the blade are assumed to give rise to independent vortex for-

mations and if to each part of the blade is applied the equation for the

intensity of the vortex sound derived previously from considerations of

dimensionality and considered for the special case of a cylinder or

Dlate. The length of a segment of the blade over which the profile and

its angle of attack changes little will be denoted by AR. The width of

the profile at the same segment will be denoted by Z(R). The intensity

of the vortex sound generated by this segment will then be

_2_2_ cos28
= r_(S)_v s(R) _ = (4.61)

2r 2

where v = 2_RN is the peripheral velocity of the segment, R is the

distance from the axis of the propeller, and N is the number of rota-

tions of the propeller. The frequency which is predominantly radiated

by this segment will be

v(R) R
f(S): : d(R) (4.S2)

where d(R) is the width of a plate equiv_ent to the blade element.

The following expression may be set up:

d(R) = _ sin m + b cos

where _, is the angle of attack of the segment, Z the width, and b

the thickness (Z, b, and _ are functions of R).

From equations (4.62) and (4.63), the following terms can be found;

R = R(f)_ and also d(f), Z(f), fkR(f) = (dR/df)f_f. Substituting in

equation (4.61) yields

dR (4.G4)nI = r (f)d6(f)fGAf d-Y

which gives the spectral distribution of the vortex sound radiated by

the propeller. It has a sharp maximum about a certain frequency f.

This is evident from the fact that f and R are approximately linearly

connected (R ~ f), and for f_ - , R _ R 0, where R 0 is the radius of

the propeller (in fact, d(R0) = _ then from equation (4.62) there fol-

lows f = -). Hence in equation (4.58), the factor f6 rapidly increases

while the factors dR/dr and d6(f) approach 0 as f _ _

Equation (4.64) can, of course, give only a very rough idea of the

spectral composition and the intensity of the vortex somd of a propel-

ler, since the assumptions made in its derivation do not pretend to
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great accuracy. The angle 8 entering the coefficient y, as is known
from section 28, is the angle between the ray at the point of observa-
tion and the dipole axis which is perpendicular to the flow. Since the
blades moveperpendicularly to the propeller axis, this is the angle
between a ray at the point of observation and the propeller axis. The
maximumintensity of the vortex noise will therefore be radiated ahead
of and behind the propeller axis, as, in fact, observed (see ref. 47).
It should be recalled that the sound of the propeller rotation (cf.
section 18) is, on the contrary, radiated in directions almost perpen-
dicular to the propeller axis. The frequencies of these two sounds,
as has already been remarked, are likewise different. The frequency of
the rotation sound is f0 = Nn (n, the numberof blades, cf. section
18), while the frequency of the vortex sound is equal to

2_N_
f: (4.65)

where R and d are the values of R and d for the most intense

frequency. The ratio of the frequencies of these two sounds will be

f R i
- 2_× • - -

fo "_ n (4_ .6C)

Since n = 2 or _, × _ 0.2, and R is generally several times (about

6 to i0) times as large as d, the frequency of the vortex sound exceeds

the frequency of the sound of rotation by several times.

_O
_O

27. Excitntion of Resonators by a Flow

In the preceding sections, the origin of the sound in the flow of

air about bodies was considered. This theory cannot, however, be app]iea

directly to bodies of any shape. It was tacitly assumed that the body

has a relatively simple geometrical shape capable of being characterized

with sufficient completeness by a single length d, which also determines

the frequency of the radiated sound by the equation of Strouha] f = ×v/d.

For bodies of more complicated shape, the case is otherwise. It is

clear, for example, that if on a body of simple shape with characteristic

dimension dI there is a projection with characteristic dimension d2,
there will be two vortex frequencies for the same velocity of the flow v:

fl = ×i " V__dl

Jv__

f2 _2 d 2

(_.67)
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The presence of any projections, sharp angles, discontinuities in the

profile, roughnesses, and so forth, may essentially change the sound

spectrum. Entirely different characteristic phenomena arise in those

cases where the body possesses not convexities but concavities. The

latter are acoustic resonators possessing proper vibrations with fre-

quencies us and damping coefficients h s. The proper frequencies of

such a resonator are determined by its dimensions d and the velocity
of sound c :

= _s hss d (4 69)

where Ws is a certain numerical coefficient. The value of the damp-

ing coefficient depends further on the viscosity of the air _ and on

its thermal conductivity × (if the thermal conductivity of the walls

of the resonator is much greater than the thermal conductivity of the

air, then h s does not depend on it). It may be said that, in the

presence of cavities in the body which are capable of resonance, the fre-

quencies that can be associated with the body depend not only on the

ratios v/d but also on the ratios c/d. The simplest examples of such

resonators will be, for example, pipes open at one or both ends, Helmholtz

resonators (in the form of bottles), and so on. All resonators of such

kind may easily be made to emit a sound in an air flow by blowing at

their mouths. This phenomenon may be on the most diverse scales, from

the whistling in the wind of a small cavity of a receiver microphone
(wlnd static) to the catastrophic excitation of the vibrations of an

open wind tunnel that may lead to the destruction of the tunnel and

buildings 56. The same phenomenon in the last war was applied by the

enemy in the so-called whistling bombs designed for psychological effect.

It finds application to other more suitable purposes in military matters.

Also, all musical wind instruments and sirens are essentially based on

the phenomenon of the excitation of vibrations by an air stream.

In all these cases there may be distinguished two mutually inter-

acting systems: the vortices arising in the flow about the body on the

one hand and the resonator on the other. The vortices do not, of course_

represent a rigid system and, strictly speaking, their action on the

resonator cannot be considered as the action of an external given force.

On the contrary, it is to be expected that the vibrations of the resona-

tor have themselves an effect on the formation of the vortices and on

their frequency and intensity so that the entire system must be considered

as self-vibrating nonlinear system, the state of which is described by

56An open wind tunnel represents a resonator pipe with open cuds and

culwed like a torus. The flow which excites the vibrations is the flow

within the tunnel itself_ and vortex formation is obtained at the exit

of this stream in the working section. Interesting investigations of

the vibrations arising in such system have been conducted by S. P.

Strelkov (ref. 50).
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the velocity v and the damping coefficient of the resonator hs. From
considerations of dimensionality, the following formula maybe written
for the amplitude of the pressure fluctuations in the resonator:

v2 V_s hs (4.69)
P=PV- 7']-

s

In the region of maximum excitation of the resonator (autoresonance),

this amp] itude should be inversely proportional to the damping coeffi-
cient h :

s
£__, _ \

v,_ Os

__,_s) (4 7o)Ps = 0 2 hs _s

where the stroke on the velocity v indicates that the equation holds

only for a certain value v = v'. The nonlinear phenomena occurring in

the systems under consideration cannot, at the present stage of the

theory of vortex formation, be considered in more detail mathematically.

The computation of the vortices that arise in the flow about a body even

in the absence of a resonator is as yet an unsolved problem. It is all

the more reason to expect little success in the computation in the pres-

ence of a resonator when, for example, there may occur an interaction

of the frequencies of vibration of the vortices with the frequencies of

the resonator, phenomena which are characteristic for autovibrating

systems. It is therefore of interest to know to what extent it may be

useful, for practical purposes, to employ a more primitive point of

view in which the nonlinear character of the relations between the vor-

tices and the resonator is ignored and the pressure pulsations produced

by the vortex formation are considered as a given external force applied

to the resonator. It is evident that such a simplified approach to the

phenomenon is possible only in the case where the system of vortices has

a considerable degree of independence so that the amplitudes and fre-

quencies of this system are essentially determined by the velocity and

geometry of the flow and not by the vibrations of the resonator. If

such is the case, the nonlinear phenomena, such as the interaction of

the frequencies, could be considered relatively unimportant, and _t

would not be absolutely required to account for such phenomena in ap-

proximations intended for obtaining only the most essential information.

It is possible also to assume a priori that the case is otherwise 3 namely 3

that in the presence of a resonator the vibrations of the vortices as a

whole are determined by the vibrations of the resonator interacting with

the flow. The problem proposed could be solved only by an experimental

method. Experiments on the excitation of resonators by air streams are

reported in reference 51. As a resonator there was taken a four-sided

tube closed at one end and placed in an air flow the velocity of which

could be brought up to 55 meters per second. At the bottom of the tube

was a measuring microphone, with the aid of which the pressures of the

vibrations arising in the pipe were transmitted. This pipe was readily

excited at definite velocities of the stream, emitting a sound with its

natural vibration frequencies _s = c(2s + I)_Z 3 s = i, 2_ 5_ • • ".

_D

_O
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A picture of the flows about such a pipe and within it is shown in figure

44. The circulation arising in the pipe, characteristic in general for

all concavities in a stream, is very slow and has no essential value for

the phenomena of interest here. On the other hand, of extreme importance

is the region about the mouth of the resonator where, as in the case of

the flow about solid bodies, an unstable dividing boundary (ABC) is

formed between the stream and the stagnant region. It is in this bound-

ary that the vortex formation is obtainedj which must_ therefore_ essen-

tially depend on the geometry of the mouth of the resonator. In order

to explain the character of the vortex formation aside from the depend-

ence on the presence of the resonator 3 the resonator was damped by a

damper of cotton and netting placed on the bottom of the resonator. The

flow around the mouth was thereby practically unchanged and the resonator

was, in effect, eliminated. The damping was chosen such that the fre-

quency characteristic of the measuring microphone located at the bottom

of the resonator coincided with the frequency characteristic of the

microphone itself. In this way it was possible to determine the spec-

tral composition of the pressure pulsations due to the vortex formation

at the mouth of the radiator. It was found that the frequencies of the

vortices were in accordance with equation (¢.67):

V

fn = × d n n = i, 2, 3_ • • • × = 0.65 (4.71)

where d is the length of the side of the mouth of the resonator. The

value of the coefficient × is given for the angle of attack _ of 70 °

(fig. 44) in the neighborhood of which there was observed the excitation

of the resonators. In this way the existence of two overtones of the

Strouhal frequency was confirmed_ which led in section Z2 to the general-

ized formula (4.6). The amplitude of the pressure of these overtones,

as was to be expected, is proportional to the square of the flow velocity:

v2

Pn = _nP _ - (4.72)

where _ = 70 ° , B1 = 0.055, _2 = 0.020, and _3 = O.OlO. Figure 45 shows
the frequency of the vortices as a function of the flow velocity v.

The same figure shows also the natural frequencies of the resonator o s
indicated by the horizontal lines. At the points of intersection of

these lines, that is, for

s = fn (4.73)

indicated on the figure by small circles, which are the points of reso-

nance, the excitation of the resonator was to be expected. This was

actually confirmed. On removal of the damper, the resonator was excited

at the stream velocities v', determined from equations (4.71) and (4.75):
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The existence of the vortices permits, at least as an approximation,

computing the pressures arising in the resonator as a result of the

action of the vortices. If q(_) denotes the coefficient of amplifica-

tion of the resonator for the frequency _(_ -- 2_f), the amplitude of the

pressure p on the bottom of the resonator will be as follows, if a

pressure of frequency _ and with amplitude P is applied at its

mouth :

p = q(o )P

This equation assumes that the vibrations are linear_ q(_) depends on

the shape of the resonator, but for all resonators in the region of

resonance frequencies (8 = 2_s), q(_) is inversely proportional to the

damping coefficient h s. Comparison of the results of computation by
this equation with the measured values of p shows (ref. 51) agreement

in the order of magnitude. The observed difference attains 6 decibels

(2 times), which already serves as an indication of the fact that the

divergences are due not to the errors of measurement but to the fact

that the assumption of a rigid vortex system fails to correspond; such

a system is actually subject to the inverse effect of the vibrations of

the resonator (autovibrating character of the phenomena). In figure 46

are given the excitation curves of a resonator (I as a function of v).

The maximums of the excitation correpsond to the resonances of the

vortex frequencies and the natural frequencies of the resonator. They

are indicated by the same letters as the circles in figure 45. The last

maximum c corresponds simultaneously to two resonances (fig. 46), when

the second overtone of the vortices coincides with the first overtone

of the resonator and simultaneously the fundamental tone of the resonator
coincides with the fundamental tone of the vortices 57. The vibrations

that arise in this case are biharmonic.

The height of the maximums is inversely proportional to the damp-

ing coefficient, as was confirmed by a change in the damping of the res-

onator. In the same manner, the dependence of the frequency of the vor-

tices on the dimensions of the mouth of the resonator (eq. (4.71)) is

also confirmed. The computation of the amplification coefficient of

the resonator for the different resonators is found in many texts on

acoustics.

57This circumstance is incidental and is caused by a characteristic

feature of the given resonator.
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For the simple harmonic Helmholtz oscillator (fig. 47) the equation

of vibrations reads:

sP (4.76)+ 2b_.' + _ < =--_

where _ is the velocity of motion of the air mass in the resonator

throat_ h the coefficient of dampingj _0 the natural frequency_ s the

throat area_ P the variable pressure applied from without; and M the

mass of air moving in the throat of the resonator. Also_ M _ pLs_ where

L is the effective length of the throat_ 0 the density of the air;

L = Z + _a_ where _ is the length of the throat_ a its radius, _ a

numerical coefficient equal_ for the case of a circular opening_ to _/2.

The natural frequency _0 is equal to:

: c _ (4.77)_0

where V is the volume of the resonator. When equation (4.77) is

solved for the external force, having frequency _ the amplitude of

the displacement {0 is obtained:

SP l (4.78)
_0 =-_

...v/(_2 _)2+ 4h2_g

(if ¢0 >> h). The changes in pressure within the resonator with adia-

batic change of the volume of air enclosed in it will have the amplitude:

__av= pc 2 _°s (4 vs)
P = pC2v V

Substituting this in equation (4.72) gives

P = P m_ (4.80)

whence

q(_) =

2

% (4.81)

_ 2 4h20_0

At resonance (_ = _0) , q(_) = _o/2h, so that the amplitude of vibration

of the resonator excited by the flow of air will be

p = Po v2 _o (_.82)
2 2h

The numerical coefficient B depends on the shape of the throat

and on the angle of approach of the flow (as was mentioned for the rec-

tangular throat_ for _ = 70 ° , _ = 0.055).
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A second simple case of a resonator is a pipe closed at one end,

such as that considered in the previously described tests (fig. i4).

In this case it is a question of the vibrations of a distributed

system. The displacement of the air along the axis of the pipe, which

will be chosen in the direction of the x-axis, is here subject to the

_ave equation :

dz--K c28_ - c_ _2__ o (4.85)
_t 2 + _x 2

where 5 is the friction coefficient that takes into account the losses

in the heat conduction and viscosity of the air 38.

The pressure p at each point is equal to:

p = - pc_ _ (_.8_)
3x

Equation (17) must be solved for the boundary conditions:

(_)x=0 = o

-oc =P (4.85)
X=Z

expressing that fact that at the closed end of the pipe (x = O) the air

is at rest while at the open end the pressure is equal to the external

applied pressure P. If the fact that the air near the mouth of the

pipe takes part in the vibrations is taken into account, the last bound-

ary condition must be satisfied by the pressure P', representing the

reaction of the associated air mass. If the impedance of this mass,

generally termed mouth impedance, is Z = X + iY_ then F _ = pc(X + iY).

In place of equation (4.85), the following expressions hold:

(¢)x=o = o

-Oc 2 _(_--_) = pc(X + iY)(i)x Z + P (4.86)

The active part of this impedance X is due to the losses in radiation,

while the reactive part Y is determined by the mass of the air vibrating

along with the resonator. These magnitudes, for an orifice of area s,

are equal to:

bO
b_

38A simple method of computing this coefficient is given in

reference _.
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4_c 2

Y = 0.7-_ _/_
C

(4.87)

and details on them may be found, for example, zn the work of Y. L. Gutin

(ref. 52). Assuming that the external pressure depends harmonically

on the time, with frequency _, the displacement _ is taken proportion-

al to e i_L. From equation (4.85), a solution satisfying the boundary

condition _= 0 for x = 0 is readily found:

/,,,2
ico5 (4.88)

For small damping (5 <<_) the following may be assumed:

K = k- i_ k =-_ _= 5-Sc (4.s_)
c 2

By the substitution of equation (4.88) in the second boundary condition,

equation (4.86)_ the amplitude g0 is determined:

P (4.?,o)
g0 = impc(X + iY) sin K_ + pc 2 K cos K_

When the real and imaginary parts are separated and the fact that

×Z << i, X, Y << i is taken into account, the following is obtained,

for the amplitude <0:

p (4.91)

gO = Ecupc [cos k_ - Y sin kl] 2 + n kZ

where

° s°z (4.9z)
h = # X +--_--

is the damping coefficient of the radiator.

On the basis of equation (4.84) the amplitude of the pressure at the

bottom of the resonator at x = 0 is equal to _OD_. The required am-

plification factor of the resonator is therefore equal to:

q(m) = 1 (4.95)

[cos kl Y sin kl]2 + n k_
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The points cos kZ - Y sin kZ = 0 determine the position of the reso-
nance frequencies• With the fact that Y is small taken into account,
this condition maybe represented in the form:

cos ---_= 0
C

t_C

_S = 2--L(2s + i), s = 0, i, 2, •

where L is the effective length of the resonator:

L = z + o.7 (4.95)

At the points of resonance, the value of the amplification factor is

equal to

(4.96)
q(_) - hc

(since sin(ksZ ) • i). Hence the amplitude of the vibrations of the
pressure in the resonator under the action of an external stream is:

v 2
p = _ (_.97)

2 hsc

This equation may also serve for estimating the value of p. Considera-

tion will now be given to the computation of the intensity of the sound

radiated by a resonator excited by an air stream. Evidently, it is suf-

ficient to compute the energy radiated through the mouth of the resonator

and, in what follows, to make use of the law of the inverse square of

the distance. The mean flow of energy through the mouth of the resonator,

according to the general equation (3.3), is equal to:

1
= _S = _ p6_O • S (4.98)

where p_ is the amplitude of the velocity of the air vibrations near

the mouth and _0 is the amplitude of that part of the air pressure near

the mouth which is produced by the radiation. This part is equal to

pcX_ O. Hence, the mean flow of energy through the entire mouth is

1N = _ oc • x_ s (4.9_)

and the energy flow through i square centimeter at the distance r from

the resonator will be

_O

_O
_O

No = 1 (4.1oo)
8_r 2

In order to obtain the final result, the value of _ at the point

of resonance must be taken. According to equation (4.91). for the tube
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P c

_0- 0c hs_
P c

_0- 0c 2hL"

and for the Helmholtz resonator; according to equation (4.79);

Hence_ for the tube the following expression applies:

X'S' c 2 Z_( _2NS- 8_r%c h%2 _' 0 (_.lOl)
S

and for the Helmholtz resonator:
2 2

N_ = X"S" c2 @,2 (0 Vo) (_$.101')
8_r20c 2h2L 2 2-

th
where v is the velocity corresponding to the excitation of the s

vibratio s of the tube and v0 is the velocity at which the HeLmholtz
resonator is excited.
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CHAPTER V

ACTION OF A SOUND RECEIVER IN A STREAM

28. Physical Phenomena in the Flow about a Sound Receiver

A sound receiver placed in a stream of air or water will register

periodic changes of pressure brought about not only by the arriving

sound signal but also by the flow around the body.

Such periodic pulsations are termed "pseudosound." It is clear

that the pseudosound will act as an obsgacle for the successful re-

ception of the useful signal 3 an obstacle which may possibly be very

significant. It is well known in practice how strongly the audibility

of the sound of a distant airplane may be lowered in a wind. Such

lowering of the audibility occurs also in the work of hydrophones of a

ship (in this case the noises of the ship are intermixed).

For this reason the case of the action of a sound receiver in a

stream is of a practical interest. The phenomena due to the unsteady

flow must be distinguished from the phenomena that take place in a

steady flow. The phenomena that take place in a steady flow are con-

sidered first. A steady flow does not contain pressure pulsations

periodic in time, but such pulsations arise on the receiver body because
of the vortex formation.

The vortex formation is; in the case considered; the only cause of

the pseudosound. The predominant frequency of this sound is determined

by the formula of Strouhal which was used previously:

f : x ! (s.1)
d

If the Reynolds number is large (Re = vd > I051-6- ; the spectrum of

the vortex pseudosound may be very diffuse near the frequency equation

(S.l). The pressure of the pseudosound will be proportional to the

dynamic pressure:

v2

P = T (s.2)

tO

tO
I,O
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where _ is a numerical coefficient that depends on the shape of the

body.

If the flow is unsteady; further pressure pulsations characteristic

of the flow are superposed on the pressure pulsations determined by the

vortex formation. This pseudosound of the flow was partly considered

previously (section 24). In this case it is necessary to distinguish

between the pressure pulsations brought about by the local change in

the velocity of the flow and the pressure pulsations associated with

the momentum transfer of the flow. This question was previously dis-

cussed in part (section 24), but now it will be considered in greater

detail. A simple example may serve to illustrate the pseudosound of

the flow. The receiver is assumed to have the shape of a sphere and

to be placed in a stream in the direction of the 0Z-axis (fig. 48).

The flow velocity V is assumed to pulsate periodically with the

frequency _ = 2_/T: then

V =V 0 + 5V . cos _t (5.5)

The vortex formation is disregarded, and the flow is assumed to be

potential. The equation for the potential @ is:

;%__i+ _ 0 (5.4)
_x 2 _ 2oy _z 2

The radial component of the velocity v r = - _¢,/_r on the surface of

the sphere (r = a) must be equal to zero_ and the velocity at a large

distance from the body must become V = - $_/_z (eq. (5.5)). A

solution of equation (5.4) satisfying these boundary conditions_ as

easily verified by substitution, will be

@ = V cos O + r cos O = z (5.5)

By the formula of Bernoulli, the pressure at such a point will be

P_= - i 2
p at 2

and on the surface of the body (r = a), on the basis of equation (5.5),

3 8v 9 v 2
p : constant + _ O cos 8 . a _-_ - _ sin28 . p -_- (5.e)

From this formula, it is seen that the pressure is made up of two com-

ponent parts; namely, the term p' which is also present in the steady
flow:

V 2, 9 sin2e . p _ (5.7)
p = constant - _ 2
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and the term p" determined by the acceleration of the flow:

p" = _ p cos 8 a . a V (5,8)
2 _t

From a comparison of equations (5.7) and (5.8), it follows from equation

(S.3) that the variable part of the pressure p'

dynamic pressure considerably exceeds the part

local acceleration if

or

determined by the

p" determined by the

a << V 1
(s.9)

2____a< V
T

that is, p' << p" if the dimensions of the receiver a are sufficiently

small. The velocity pulsation considered is uniform over the entire

space. If the pulsations have the dimension A_ then T _ A/V; and

equation (S.9) reduces to

a << A (S.lO)

This condition was obtained in section 24 by a different method_ it is

apparent that_ for small dimensions of the receiver in comparison with

the dimensions of the pulsations_ the changes in dynamic pressure have

a much greater significance than the acceleration of the flow.

The spectral distribution of the pseudosound of an unsteady flow

is entirely determined by the nature of the flow. If the nonsteady

condition of the flow is produced by the flow about certain bodies

placed near the receiver so that the receiver is in the vortex street

of these bodies_ the spectral composition of the pulsations is deter-

mined by the Strouhal frequencies and their overtones_ as has already

been shown in the example of the ideal Karman street (section 24).

J

At a large distance from the bodies_ the Karman street undergoes

a breakdown and the flow will be turbulent. A natural wind likewise

represents a turbulent flow. The fundamental features of this turbu-

lence were described in section i0.

As previously stated in section 24_ the computation of the magnitudes

and spectral distribution of the pressure pulsations on the surface of

a receiver in any unsteady flow is at the present time an insurmountable

problem. It was pointed out that a partial analysis of this problem

is possible on the basis of dimensional considerations in the applica-

tion to the fundamental equation of hydrodynamics. In the general case,

the pressure on the surface of the receiver is assumed to be determined

by
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bv pv? (5.11)
p = _pa >,t + _ 2

This equation is a generalization of equation (5.6), which holds for a

particular case. The fact that the pressure at any point and at any

instant of time depends on the dynamic pressure (pv2/2) and on the

local change in velocity ov/c,t is expressed in equation (5.11). Since

the velocity varies not only in magnitude but also in direction, tile

angle of attack will vary with the velocity fluctuations of the flow.

Because of this variance, tae numerical coefficients _ and _ which

depend only on the shape of the body and the angle of attack_ will also

be functions of* the time. If the magnitude of the pulsations Sv is

much less than the mean velocity of the flow v, the changes in

and _ will be slight. Further; the derivative Sv/_t is of order of

magnitude equal to _v/T : V_v/A; and therefore; with equation (S.lO)

satisfied_ Sv/cZt may be rejected. For the variable part of the pres-

sure p_

p' = _opv _v + _ _p -- (s.12)
0 2

where _ is the angle of attack and the subscript 0 denotes the value

of _ and _/_ for the angle of attack of the main flow (_ = @0 ) .

(The variation of the angle of attack $_ is equal to _vt/v ,

where bv t is the fluctuation of the velocity in the direction per-

pendicular to v).

For isotropic pulsations_ 5v t = 5v and therefore

(5.1s)

The spectrum of the pressure p' therefore coincides with the spectrum

of the velocity pulsations _v, and its magnitude may be computed from

the stationary flow about the body under consideration. This evidently

is the only rational conclusion which can be drawn from equation (5.11).

For the mean square of the pressure pulsations from equation (5.13)

p,2 = eZpZv25v2 (5.14)

and the spectral distribution is obtained from

-7 : (5.15)
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where Sv(m) is the amplitude of the pulsation belonging to the frequency

m. Hence_ for the mean-square pressure of all pulsations_ the frequencies

of which lie between ml and w2_

The amplification factor of the receiver is assumed equal to q(m) in

order that the signal received by the receiver is measured by the magni-

tude P:

p =J_ q(_)p,(_)ei_t_ (5.17)

Squaring and averaging equation (5.17) with respect to time yield

where 3 on the basis of equation (5.14)_

(5.19)

If the receiver has sharp resonances to that_ for example_ there is a

natural vibration with the frequency m = m0 and damping coefficient

of h_ then for m = _0 the amplification factor becomes particularly

large and, as is known from section 24_ is equal to q(m0) = q'm0/h,

where the coefficient q' is of order of magnitude equal to i (section

27). Integrating equation (5.18) with respect to _0 between the

limitsof the resonanceline (mO h/2, _0 + h/2), yields

_.___ F_o+h/z 2

P2(C°O)= _0"/h/2 q2(c_O)p'2(c°O)dm= q'2 __mOh" p'2(toO)
(s.2o)

For small values of h, this part of the magnitude p_ may predominate

over the remaining parts to such an extent that practically the entire

effect of the pseudosound on the receiver may be reduced to the emitting

of a sound from the receiver at the resonance frequency _0' Hence_

receivers with sharp resonances will be particularly subject to acoustic

disturbances.

This case is characterized by the possibility of reducing the action

of the nonsteady flow to that of a steady flow. The fundamental result

is the fact that the spectrum of the pressure pulsations reduces to the

spectrum of the velocity pulsations. If the approaching flow is a well

developed turbulent flow_ the approaching flow may be applied to the

turbulence theory described in section !0.

_O

_O
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This theory was developed for homogeneous isotropic turbulence.

The 2/3 law, which determines the spectral distribution of the veloc-

ity of the turbulent motion over the pulsations of different scales 3

was obtained. Now_ however; the distribution over the frequencies is

of interest. The problem of associating the distribution of the fre-

quencies with the distribution over the spatial scales has been solved

only for linear vibrations of the medium (for example_ for sonic noise).

In the case of the turbulent motion of a gas or liquid_ this

relation has not as yet been established.

For the determination of the velocity spectrum over the frequencies,

the same considerations which were applied to the diffusion of sound in

a turbulent flow (section 12) may be employed. As was explained 3 the

important fact is that the frequency of the turbulent pulsations is in

itself very small. The high frequencies 3 which are of significance in

acoustics, are obtained in virtue of the fact that the large-scale

velocity pulsations transfer the small-scale pulsations. If the large-

scale velocity pulsations which change slowly are included in the mean

velocity v (in this way v will have the sense of a mean velocity

over a time during which this velocity does not undergo considerable

changes and which is much greater than the period of those frequencies

which are received by the receiver), then v will be precisely the

velocity with which the small velocity pulsations are displaced. For

these small pulsations the 2/5 law holds, in accordance with which the

mean value of the square of the velocity u for the pulsations which

have a scale less than A = 2_/q will be (see section I0, eqs. (2.63)
and (2.64)):

i uE I yq-2/5
E(q) = _ (q) =

3
(5.2l)

The magnitude u(q) is precisely 5v(q). Thus,

[5,,(q)]2 = 2 r • q-2/3
3

(s.22)

Since these spatial pulsations of velocity are transferred with velocity

v; the frequencies of the corresponding pulsations will be f = v/A or

= qv. Thus the intensity of the velocity pulsations with frequencies
between _ and w will be
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Differentiating this magnitude with respect to

waiue :

: -- y

9

yields the required

s.24)

Substituting this result in equation (5.19) gives the equation for the

spectral distribution of the pressure acting on a receiver placed in a

turbulent stream.

The constant y, as has already been pointed out, is evidently a function

of the velocity v. Its value has been considered in connection with the

diffusion of sound in a turbulent flow (section i0, eqs. (2.58) and (2.$9)).

Since y and _ may be assumed as known, equation (5.25) permits

cou_uting the spectrum of the turbulent noise. As is seen from this

eq_stion_ the noise of a turbulent flow is concentrated around low fre-

quencies] the intensity of sound near the frequency _ is proportional

to -5/3. For _ = 0, equation (5.25) is not valid since slow pulsations

in the mean velocity v have been included. With regard to the de-

pendence on the wind velocity_ if y is assumed constant; the dependence

va/3
on the velocity is obtained as . It was pointed out_ however, that

increases with the velocity in a manner which is as yet difficult to

determine precisely but which, from all the data available, may be taken

approximately as v. If this dependence is taken into account; the noise

11/3
should increase as v Finally; it must be borne in mind that equation

(S.25) is not suitable for high frequencies since in its derivation it

was assumed that the dimensions of the receiver were a << A. Hence;

it is applicable only to _ < 2_v/a. (Otherwise, terms are added which

are due to the local acceleration _v/_t.) Undoubtedly it gives a lower

limit of the sound. The fact that the intensity of the sound increases

as -S/3 is evidently one of the greatest obstacles to acoustic direction

finding, since predominantly low frequencies (80 to i00 hertz) which will

be masked by the turbulent sound arrive from a distant airplane.

29. Shielding a Sound Receiver from Vortical Sound Production

No universal method of shielding a sound receiver from vortical

sound production is possible. The question depends essentially on the

dimensions of the receiver and on the working frequency range, the choice

of which is determined by the character of the signal that is to be re-

ceived. It is nevertheless possible to indicate certain methods that

may be found useful.
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In the first place; it is possible to vary the dimensions of the

receiver so that the Strouhal frequency may be displaced either toward

the lower frequencies (by increasing the dimensions of the receiver) or

toward the higher frequencies (by reducing the dimensions), depending on

the purpose. This method is based on _he fact that for the same velocity

of the approaching stream and shape of receiver the characteristic Strouhal

frequencies are inversely proportional to the linear dimensions of the

receiver:

f I d,l
- (5.26)

f" d'

In those cases where the change in dimensions of the receiver is not a

rational procedure, a sound-transparent screen F of netting or fabric

(fig. 49) may be applied. The principal air flow in this case tends

to pass around the screen and the velocity of the flow within is con-

siderably lowered. The Strouhal frequenc_ formed on the vortex deflector

is then lowered and will be equal to

f' r .
D

where f is the Strouhal frequency on the body of the receiver M_ d

the dimension of the receiver_ and D the dimension of the deflector.

It is necessary to avoid angles; projections; and so forth, on the body

of the deflector_ since they may become the cause of vortex formation in

an undesirable range of frequencies.

In addition to the effect of lowerin_ the frequency, which was due

to the screen_ the region of the vortex formation is farther removed

from the body of the receiver; another useful-result of this method.

A part of the flow will nevertheless pass through the screen_ but its

velocity v' will be less than the velocity of the approaching flow

v. Because of this lower velocity_ the frequency of the vortex formation

immediately at the receiver is likewise lowered in the ratio

V'

f" = f . --
V

while the amplitude of the pressure will drop by (v'/v) 2 The value

of v can not be computed exhaustively; but reasonable estimates may

be made. For this purpose; the resistance of the nettings to the flow

of air (or of water) must be considered.

In view of the fact that nettings or screens are widely applied for

various wind-shielding apparatuses_ it is necessary to discuss them in

more detail. If the difference in pressure on both sides of the screen

is set equal to Ap; and the volume rate of flow of the air through it is

set equal to Q cubic centimeters per second_ then
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Ap = wq (s.zg)

The magnitude W defined by this equation is the resistance of the

screen. This magnitude may be represented in the form

w = w ! (5.3o)
S

where S is the cross-sectional area of the flow, _ the effective

thickness of the screen (or other porous partition, for example_ fabric),

and w the resistivity. The characteristic magnitude for a screen is,

of course, the product wZ. The resistance W is considered as the

resistance of a system of parallel ducts (or small tubes)_ the length of

which is equal to Z and the cross-sectional area of which is equal to

o; the area of the screen on which_ on the average, there is one opening

is denoted by Z. If the ducts are not identical, then _ _ and Z

must be considered as the characteristics of the mean representative of

the ducts. In order to determine the pressure drop Ap over the length

of the duct Z, the equations of Navier-Stokes reduced to nondimensional

form were used. For measuring the coordinates along the duct, the length

scale was taken as the length of the duct _ and for the transverse

scale, the magnitude %/_. The scale of velocity would be the velocity

of the flow u, and the scale of the acceleration the magnitude _u_

where _ is the frequency of the flow pulsations. These equations are:

_t + (_,7)_ : - Y-P-+ _ • Vv (5.31)
D

where _ = _I _ is the kinematic viscosity. The derivatives _/$x,_/_y, and z may be reduced to the derivatives along the duct (_/_s)

and transverse to the duct (_/_n). Then, setting _/_t = _x_/_t',

_l_s= (ll_)_l_s,,_l_n= ( _ _ _ _ =i/_/_)o/on', v = u.v', and p _p.p , equa-

tion (5.31) reduces to the form:

_uq7+ s + n_
_s' _ _n

(5.31')

where all the stroked magnitudes are nondimensional and the magnitudes

and their derivatives are of the same order; _' and _' are unit

vectors along and transverse to the duct. The case where the viscosity

is the predominant factor is considered first. In this case the last

term predominates over the others. Dividing the entire equation by
_u/g_ the desired pressure drop _p will be measured in the units

_p_u/o (8_u/o could be used as this corresponds to the Poiseuille law).

'l,O
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in equation (5.51') dimensionless parameters on which Ap

namely, om/u, u_/_Z, and a/_ 2, will enter. Thus,

may depend,

c_
c_

c_

o

O

i
O
[3

where F I is a certain dimensionless coefficient depending on the in-
dicated parameters. The term ua_Z represents the Reynolds number and

determines the ratio of the inertia to the viscosity forces. The value

of this term is small for small u, but for these values of u the

equation becomes linear; hence for small velocities of flow F I practical-
Ly does not depend on u_/_. Further, for long ducts (_/_2<< I) the

pressure drop should be proportional to the length of the duct Z; hence,

F I should likewise not depend on _/Z2. Thus,

Ap= 8_---_Zcu¢ (_)

for u___<<i, i< i (5.52')

Z Z2

Finally, for small frequencies (mm/u<< i) the Poiseuille law must be

obtained so that _(0) = i. For large a_/u, the coefficient 9 _ _--7 _

(see s e.g., Crandall, ref. 55). For u_/uZ,> I, the forces of inertia

will predominate over the viscous forces 3 and therefore it is convenient

to use the dynamic pressure pu2/2 as the measure of the pressure. In

an analogous manner, the following equation is obtained in place of

equation (5.52):

co ,Ap - _u z F2 (S.33)

For small values of the parameters entering the function F 2 this
coefficient will only slightly depend on them. The square law of the
resistance is therefore obtained. The effect of the acceleration is

now determined by the parameter _/u. The volume rate of flow Q

is computed as

Q-- ua s
Z

When u from equation (5.52) is substituted and when equation (5.54) is

compared with equation (5.29),

W0 8_Z , (___a) Z

for
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In the same manner, substituting u from equation (5.34) in equation

(5.33) yielas

w=2 _o2 _ _ I ss

for

u-z>>I 2_ < I (5.36)
uZ Z 2

where _ is the value of F 2 for small values of u _/u_ and _/_2.

If the frequencies of the pulsations are not large 3 W will increase lin-

early with an increase in Q. In the case W = 01 by the author's meas-

urements (ref. 54), the numerical value of the coefficients @ and Q

is such that

wo: 2._ . lo-3 _!. g
_2 S (sec)(cm)4

for

and

for

Q < l._ . s_ (s.3v)
Z

W= 2
z Q g

lO -2
W o

_/_s (sec)(c_)4

Q >> 1.s s_ (s.3s)
Z

For the correct application of equations (5.37) and (5.38), it is

necessary to take

_=ab 1
= (a + d)(b + d)

= 2d

(s.39)

where a and b are the lengths of the sides of the openings and d

is the thickness of the fibers of the netting or fabric. It is necessary

to bear in mind that the last equation is valid only for the condition

W >> WO. In the intermediate region, the resistance must be considered

as the sum W' _ (W + WO)/2. This intermediate region corresponds 3 as

experience shows_ to the values of the Reynolds number uo/_Z _ I0,

which corresponds to the values of the volume rate of flow Q indicated

_O

_O
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in equations (5.$7) and (5.38). Figure 50 shows the form of the resist-

ance W as a function of Q for fabric with a = b = Ixl0 -2 centimeter

and d = 8x10 -2. The transition from the resistance W0_ independent

of the velocity; to the resistance W proportional to the velocity_ as

predicted by theory_ is apparent in figure 50. The computation of the

resistance of a fabric or netting permits the evaluation of the velocity

u of the flow of air through a meshed screen. 39 The value of the pres-

sure drop of the air flowing through the meshed screen will be

ap = Pv__ 
2

where p < I] this pressure drop is equal to

v 2

2 S S
(5.41)

The magnitude Q/S is the mean velocity of the flow v'. For

ua/vZ _ I0, the unit resistance wI (it has the dimensions mechanical
ohm/cm , and 1 mechanical ohm = 1 g/sec) is constant and equal to w0Z.

Hence from equation (5.41)_

v_' = pp_____v(for u--_< i0)
v 2Wo_

v'Z
u = (5.42)

From these equations for a fabric with Wol = i0 mechanical ohm/cm 2 and

v : S m/sec, v'/v = 3_xlO -2 << I. The term u_/uZ = v'Z/UZ = 7.S'_ << i0

(assuming Z = i0 -Z and I = 2"10-2). For larger values of uo/vZ_

equations (5.38) and (5.41) yield

= or -->> I

v u_
(5.43)

where y is the coefficient of proportionality between the unit resist-

ance wl and the velocity v':

= rv' (5.44)

39AII these considerations refer also to the flow of waterj but the

numerical coefficients in equations (5.37) and (5.38) will be different.

Further, the fabric will swell up in water so that its dimensions will

change considerably.
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Onthe basis of equation (5.38) y = 2.10-2w0ZZ/4_. For the same data

and q = l0 -4,

y = 2.10 -2

v'Iv = o.17 

and

= 8"10-2 1/2v

so that for v = I0 meters per second, v'Z/U_ = 80_ I/2. In this case

the velocity v' of the flow through the screen is linearly connected

with the velocity of the approaching flow v. From equations (5.42)

and (5.43) it is apparent that a considerable lowering of the velocity4
within the screen for moderate resistances (about 10 mechanical ohm/cm )
of its fabric can be obtained. The extent such a screen will lower the

intensity of the sound of the arriving useful signal has to be con-

sidered. Actually, the resistance in this case must be computed by

equation (5.35) for _ _ 0. The magnitude @(c0o/u), although it in-

creases also in this case, nevertheless still remains a magnitude on the

order of I (for medium frequencies and small values of a). It is

therefore possible to take the value of W for _ = O. If the resis-

tivity is w, the pressur e drop of the sound wave will be

dp = - w dx'Q/S = - w dx_, where _ is the velocity of the fluc-

tuations. This magnitude is equal to p/oc where c is the velocity
of sound. Thus

dp = - pax (5.45)
pc

therefore for the total thickness Z of the screen,

_w_

p = po e pc (5.46)

That is, the drop in intensity of the sound in decibels will be

l(db) = - 20 bog e
w_

m

pc
--- - o.2owz (5.47)

that is, for example, for wZ = i0 mechanical ohms per centimeter 4 only

about 2 decibels. Thus 3 without conflicting with the sound transparency,

it is possible to lower the velocity of the flow within the screen and

thereby lower the frequencies and intensities of the vortices.

_O



NACA TM 1599 i_ _

In connection with screens; it is of interest to point out another

method of their application for eliminating the vortex formation. Tbis

elimination depends on the fact that a flow passing through a sufficiently

transparent screen becomes turbulent_ the frequencies of the vortices

being then determined by the dimensions of the meshes of the screen b

and the velocity of the flow (f"' :: kv/5). These frequencies may be so

high that they appear beyond the limits of the frequency range of the

receiver. The placing of such a screen near (or around) the receiver

will not_ of course_ shield the receiver from the pressure pulsations

in the flow if it is nonstationary, but the vortex formation on the

body of the receiver will be artificially displaced toward the region

of high frequencies f"' This effect is shown; for example, by the

protective screens that cover the mouths of loudspeakers (fig. 51). If

there were no screen, the frequencies of the vortices would be deter-

mined by the dimensions of the opening of the loudspeaker. The screens

displace the spectrum of the vortices toward the higher frequencies.

This breaking down of the vortices is very well shown in the excitation

of resonators by an air stream, discussed in section 27. If at the

mouth of such an excited resonator a screen S'S" is placed inter-

secting the stream (fig. 5Z), the excitation of the resonator is im-

mediatedly cut off_ even for the ease of a very rough screen (meshes of

the order of 1 cm2). This change in the scale of the vortices is also

employed for the absorption of vibrations in open wind tunnels by

placing near the opening of the tunnel from which the vortices are

shed projecting lugs which break down these vortices into smaller ones

(ref. 5o).

30. Shielding of Sound Receiver from Velocity

Pulsations of Approaching Flow

If the approaching flow is not steady; the problem arises of

shielding the sound receiver from the pressure pulsations brought about

by the nonsteady flow. In section 28 it was explained thatj for the

condition where the mean velocity of the flow v is much greater than

the velocity pulsations 5v and for the condition where the dimensions

of the receiver d are much less than the dimensions of the pulsations

A, the nonsteady flow about the body of the receiver may be considered

on the basis of a knowledge of the flow picture for the steady flow.

This permits making use of the important results from the theorem of

Bernoulli applied to the flow about a body. In the flow about bodies,

due to the compression of the stream; the velocity of the stream on the

lateral sides of the body increases_ while ahead of and behind the body

it is slowed down. As a result, by the law of Bernoulli_

v 2
p = constant - p -- (5.48)

2
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the pressure on the lateral surfaces of the body drops_ while it in-

creases ahead of and behind the body. On figure 53 is shown the pres-

sure distribution over the surface of a sphere and of a streamlined body.

A particularly interesting picture is evidenced in the case of the stream-

lined body.

The pressure in the middle part of the surface is not only negative

but is very small in absolute value. Hence_ if the sound receiver is

placed in this part of the body_ the change in pressure produced by the

velocity pulsations of the flow may be very small. For a suitable

choice of the shape of the body_ the local coefficient @ could be made

to attain a value between the pressure p and the dynamic pressure

pv2/Z up to 0.02. We may note that for a mean velocity of the flow

directed along the axis of the body (d@/d_) 0 = 0 so that equation (5.13)
reduces to

p' = _oOv Sv (5.49)

The receiver diaphragm may be made flush with the surface of the de-

flector at the place where B0 is minimum_ or the receiver may be

placed within the deflector_ making a part of its screen transparent to

sound. The sound-transparent surface must be very smooth and not too

transparent to the flow; otherwise the flow about the body may change

considerably.

The pressure distribution over the body with maximums ahead of and

behind it and a minimum at the lateral sides suggests still another

method for dealing with the pressure pulsationsj namely_ the principle

of compensating the pressures. The essential character of this principle

will be described in a simplified idealized form by imagining a body of

the type illustrated in figure 53 placed in a stream. Inside the body

there will be a chamber with a pressure receiver in it. A part of the

surface of the deflector will be made transparent to the flow_ for

example_ at the forward part where the pressure is positive and at the

sides where it is negative (fig. 54). Under these conditions there

will be a stream of air through the chamber. The velocity of this

stream normal to the surface of the deflector will be denoted by Vn,

and the difference in the pressures outside and inside the transparent

partition by _P = Pa - Pi" The flow of air passing through the area

ds will then be equal to:

dL : vn ds v n - Ap _ Pa - Pi (5.50)
W W

_o
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where W is the resistance of the partition. The total flow through

the entire transparent parts of the surface of the deflector will be:

On account of the incompressibility of the fluid_ this flow must be

equal to zero_ hence,

y Pa " as fPi " dsw - w

If W is constant_ it follows that the mean outside pressure is

equal to the mean inside pressure:

Pa : Pi (5.$3)

The mean is t_en over the transparent parts of the deflector. If

W is large, the interior velocities will be small and the pressure

Pi may be assumed as practically constant over the entire volume so

that P_ = Pi" By choosing the position of the transparent s_faces
and thelr resistance W and mak_ing use of the fact that at some places

Pa _ 0 and at others Pa _ 0, Pa may be made equal to zero; from

equation (5.33) it then follows that Pi = 0. Thus_ a chamber of

constant pressure is derived. An example of this t_e of chamber is

illustrated in figure 54. The parts of the deflector transparent, to

the air flow in the given case are located forward (screen sl) and at

the sides (screen s2). _ Sl_ Pa _ 0 and at s2_ p _ 0. The third

screen s3 breaks up the additional stream entering the chamber through

the opening sI. In this case, it was found possible to attain the

value _0 = 0.001 for the position of the microphone M shown in the

figure so that the pressure near M was only a thousandth of the dynamic

pressure. The screens were still entirely transparent to the sound.

The screens are important also from the vie_oint that, using acoustical

terminology, they represent only active resistances since the enclosed

chamber possesses no resonances. If for exa_le_ the deflector is made

rigid with a small number of openings, a resonator of the Helmholtz

t_e is obtained which strongly distorts the frequency characteristic

of the receiver device.

The preceding discussed principle of pressure compensation leading

to the formation of a constant-pressure chamber in many cases partially

acts, so to speak, by itself. In fact, if the receiver is placed inside

a deflector provided with walls transparent to the flow_ it is sufficient

that a part of the flow enter the chamber at Pa _ Pi and issue at

Pa _ Pi for at least partial compensation to take place. Such partial

compensation will be obtained, for example_ in a screen deflector having
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the shape of a sphere (see fig. Ag) on the surface of which_ for a
sufficiently thick screen_ there will occur both positive and negative
pressures (see diagram of pressures in fig. 53).

As an example there maybe cited the shield of a loudspeaker
(fig. 55) madein the form of a sound-transparent sphere which encloses
the opening of the speaker. If the transparency of such a sphere for
the air flow is small_ the pressures will be distributed as shownin
the figure by the + and - signs_ and compensation of the pressure
pulsations due to the velocity pulsations will to a certain extent
be obtained.

It must_ however_be borne in mind that all the conclusions refer
to that part of the pressure pulsations which is produced by a change
in the dynamic pressure. The local changesof the velocity_ as has
been explained, likewise lead to pressure pulsations of the form

_v
P" = Pa _" This part of the pulsations remains even on the lowering

of the magnitude p' = _'pv2/_ so that it will form a certain back-

ground serving as the limit of the lowering of the acoustic inter-

ferences brought about by an unsteady flow. It is possible_ of course,

to suppose that this part of the pressure may likewise be subject to

compensation_ but for this there is no rational data because very

little is known of the flow about bodies in a nonsteady stream. More-

over_ the possibility of eliminating the interferences due to this

part of the pressure may be doubted since they are essentially the

same type as the pressure changes produced by a sound wave in a wave-

less region. The elimination of such interferences will therefore

probably be in contradiction to the requirements of the sound receiver.

31. Sound Receiver Moving with Velocity

Considerably Less Than Velocity of Sound

The fundamental problem which is encountered in the mathematical

theory of a moving receiver is that of computing the variable pres-

sure produced by an approaching sound wave on the surface of a re-

ceiver, in particular its working part. Th_s problem includes the com-

putation of the flow about the body of the receiver_ a computation

associated with well-known difficulties.

A particularly difficult problem is that of the vortex formation

arising behind the body. If the receiver body is of a well-streamlined

shape_ however_ then 3 at least in its forward part 3 the flow may be

considered as potential. If the working diaphragm is located in this

part_ the application of the potential-flow theory may be entirely

practicable. In this section the idealized case of potential flow for
v << c will be considered.
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In this case the equation for the potential of the sound wave _,

if terms of the order of v2/c 2 are neglected, is (see eq. (1.85)):

i _2_ = Ae + 2 V
c2 _t2 ' _t] (s.s4)

where _0 is the potential of the undisturbed flow about the body of

the receiver (_ = - V@O). This potential satisfies the equation

A% = 0 (5.55)

and the boundary condition

b@0
- 0

bn
(on the surface of the body) (5.5_)

where O/tin is the derivative along the normal to the surface of the

body. The required sound potential • must satisfy equation (5.54)

and the boundary condition

- o (on th_ surface of t_e body) (5.SV)
bn

(the yielding of the diaphragm is i_nored). For a harmonic sound of

frequency _> [the frequency _ is considered in a system of coordinates

in which the receiver is stationary and the medium is in motion); set

o = _0 ei_t. Then from equation (5.5_)

A_o +k% o + Zi_-l (_¢0'V_) = 0 k:_- (S.54')c 0 c

The potential of the sound wave

known. This potential must then satisfy the equation

I/ in the absence of the flow is assumed

A_O + k2_o = 0

and the condition o_ 0 n : 0 on the surface of the receiver.

k¢ 0
-i--

C

<_0 : _0 e

(5.54")

SettinK

(5.5_3)

where @0 is the potential of the flow and then substituting thfs
-g ITsolution in equation (5.54') satisfy the equation (5.51) when terms of

the order of v2/c 2 are neglected. Equation (5.58) may therefore be

considered as the solution of equation (5.54) with the assumed accuracy.
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This solution satisfies also boundary condition (5.57).

_ _ _0 ei_t ei(_t-_) (_0 ik _0 01_n Sn = \_nn c _n _ : 0

on the surface of the body, since $@0/_n

In fact,

(5.57')

and _o/$n are equal to

zero. Thus_ if the wave field @0 is known near the stationary re-

ceiver, then with an accuracy up to v/c the field near the moving

receiver _0 is obtained with the aid of the simple equation (5.58).

In particular, if there is considered a plane wave propagated_ for

example_ in the oz-direction_ the solution for the stationary receiver

will be

_0 = Ae-ikz + S(r,e,@) (5.59)

where Ae -ikz is the incident wave and S is the dissipated wave. For

large r, S must have the form S = B(e,_)e-ikr/r, where B(e3_ ) is

the amplitude of the dissipated wave at a large distance from the body.

It depends only on the angles e and 4, which determines the direction

of the dissipated beam. The solution for the moving receiver will be:

q ri t-kz-k i t_t-k-_J
= A . e + S(r,8,_)e (5.60)

At a large distance from the body, the factor e-ik_o/c essentially

gives the Doppler effect. In fact; for illustration take the case of

a plane wave moving on the body with velocity v along the z-axis.

Then at a large distance from the body _0 = - vz3 and therefore the

phase of the approaching wave is [et-k(l-v/c)z]. Consider next a

system of coordinates in which the flow is at rest, _ = z - vt. In

this system the phase of the wave will be

[_t-k(l-v/c)z] = [_(l-v/c)t-k(l-v/c)_], and therefore the frequency is

equal to _0 = (n(l-v/c). Hence the frequency in the system in which

the body is at rest will be

- -mO i + + "."
I - v/c

as must be the case by the equation for the Doppler effect. The

variable pressure on the surface of the receiver will now be computed.

For this purpose use is made of the equation of Bernoulli 3 according
to which

J dp = (S.SZ)w = -$- constant + --_ - [V(@O+@)
_t 2

_D
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JP+_ JPSince the small change Sw = dp/p dp/p = _/p, where

is the sonic pressure 3 there is obtained for the variable part of the

pressure

.k@ 0
--1'

_O = [i_0_(V_0,_0)] e c + terms of higher order (S.6_)
P

C_

t_

Far from the body where the flow becomes uniform; this equation

does not give any results of interest. It confirms only the fact that

the pressure _ in a system of coordinates in which the body is at

rest is the same as that in a system in which the body moves (for

checking this statement; it is necessary to take into account the

Doppler effect; by virtue of which; in a system of coordinates con-

nected with the flow, _/_t = _0_P and not <n_.

Near the body the situation is otherwise. The magnitude _0 near

the surface of the body is of the order of magnitude equal to the ampli-

tude of the incident wave A (see eq. (S.S9)) and 9_0 is of the order
of magnitude equal to A/a, where a is the dimension of the body

(here the tangential component of \90 is considered; the normal com-

ponent is equal to zero). Hence the first term in equation (5.63) is

approximately equal to _A and the second _ vA/a. For v/a >

the pressure on the surface of the receiver will be determined not by

the first but by the second term. The amplitude of the potential A

is connected with the amplitude of the pressure of the incident wave by

the equation A = _0/iP_. Hence_ according to equation (5.63)_ the

pressure on the surface of the receiver due to the first term on the

right side of equation (5.63) will be _' _ ZO and that due to the

second term will be _" = v_0/sm and for v/a > _ may be greater than

_'. That is_ the characteristic amplification effect occurring in a

moving receiver is obtained provided its dimensions are sufficiently

small and the frequency of the sound is not too high. The condition

of the presence of such amplification may 3 on the basis of what has

been said_ be written in the form

> z___ff (s.64)
c k

where v/c << i. The dimensions of the receiver must thus be very much

smaller than the length of the sound wave k.
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32. SoundReceiver Moving with Velocity Exceeding Velocity of Sound

This case of the motion of a receiver presents special interest
and at the sametime special difficulties for theoretical computation.
These difficulties are connected with the fact that to all the com-
plexities of the problem of the flow about a body there is added the
further feature of supersonic motion_ the existence of density jumps
(or shock waves) the occurrence of which was discussed in section 19.
Instead of a solution of the problem posed_ this section will be re-
stricted_ in addition to a few general remarks_ to the discussion of
the idealized simplest case which may serve as an orientation for a
more detailed analysis of the problem of a receiver moving with super-
sonic velocity.

fUhis problem has been the subject of frequent discussions (see_
e.g._ ref. 34) and various questions have been raised: Will the re-
ceiver in general receive the sound signal; will there exist a re-
flected wave; and so forth. There is_ in fact_ no basis for assuming
that a receiver moving with supersonic velocity w_ll not receive the
variable pressure of a sound wave as soon as it is incident in its
field. It is evident that it will always fall in its field provided
the sound does not issue from a source located behind the receiver
so that the sound is forced to overtake the receiver which for v > c
it cannot do.

The wave dissipated by the receiver will possess the characteristic
that its entire field will lie behind the receiver in the Machcone and
moreover will be double (see section 20); that is, there will be two
fields of different frequencies. For supersonic velocity of the re-
ceiver; however_ the transmitted wave before reaching the receiver body
must pass through the shock wave separating the part of the medium
undisturbed by the motion of the body from the undisturbed part. Figure
$6 illustrates what has been said for the case of a sound wave radiated
by the source Q and received by the receiver P moving with velocity
v > c. The curve M'MM" represents a section of the surface of the
shock wave.

In connection _ith this_ the question arises of the passing of a
sound wave through a shock wave which is; in a way; a second screen of
the receiver.

Under the usual conditions the presence of a sharp changeof state
of the mediumwould necessarily lead to the occurrence of two new waves_
the reflected wave and the transmitted one. In this case; however; a
reflected wave; as it is known, cannot be formed since the shock wave
moveswith supersoni<_velocity and without doubt would overtake the wave
reflected from it. A certain light is thrown on this paradoxical

_O
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situation by the consideration of the simpler problem_ namely_ the

transmission waves through a plane shock wave. It will be shown that

in this case two transmitted waves arise of which one is a particular

type.

Assume a straight density jump (shock wave) lying in a plane parallel

to the plane x -- 0 and moving in the direction of the positive x-axis

(fig. 57) with velocity V. As was explained in section 19, the velocity

V is _reater than tile velocity of sound in the medium at rest (V > c2)

in which the shock wave is displaced. The case will be considered in

which a plane wave (from x = + _) is propagated so as to meet this shock

wave. Since in the shock wave a jump in entropy occurs, recourse must

be made to the general equations of the acoustics of a nonhomogeneous

moving medium (eqs. (1.70), (1.71), (1.72) and (1.73)) if the propagation

of sound is considered under these conditions. These equations for the

one-dimensional problem which is being considered are

__ __ _[b_ + v _s + p __ = o (5.66)
St bx bx

b.__+ v __E= o (s.67)
bt bx

In these equation < is the velocity component of the sound vi-

brations along the x-axis (,__y= &z = 0); v is the velocity of the medium

a!ol_g the x-axls (Vy = v z = 0); 6, _, and a are the changes in density

of the gas, its pressure, and entropy_ respectively_ produced by the

sound wave. The terms VP, 7P_ and <_s are neglected because p_ p_

and s are assumed constant on each side of the shock wave. If the

entropy of the medium were everywhere'constant_ then_ as was shown

earlier (see section _); a = O. In a shock wave; however; the entropy

itself changes discontinuously so that it must not be assumed that

s = constant and it is not legitimate to assume a = 0 for the entire

medium. In the incident wave; of course, propagated in a medium at rest

(eq. (5.66)); _ = O, since this wave may be considered as a usual adiabatic

sound wave. With regard to the secondary waves arising as a result of

the interaction of the incident sound wave with the shock wave, the

question whether these waves are accompanied by changes in enthropy or

not can be decided only on the basis of the consideration of the

boundary conditions.
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For the solution of the previously mentioned problem; it is con-

venient to use a system of coordinates in which the shock wave is at

rest (x' = x - Vt). In this system the velocity of the medium is

u : v - v (5.ss)

and equations (5.65), (5.66), and (5.67) become

--+u -- (565)
_t _x' _x' + -p--_x' " '

_-#+ u a-_ + _ _ = o (5.ss')

--+u - o (5.67')
_t _x'

where in place of (_P/_P)s and (_p/_S)p are used the values

:
s P

(_s) = h - (5.65)
P

p Cv

With the assumption that the incident wave is a harmonic wave; _3 _

(w't+k'x')
and a may be set proportional to e i ; where w' is the

frequency (in the system x') and k' is the wave number. For such a

wave; carrying out the differentiation in equations (5.65')_ (5.66')_
and (5.67')_ yields

(to + uk')E k'c2 h' = 6 - - k'a (5.70)
P P

_9

(_' + uk')6 = - pk'_ (5.71)

(_' + uk')_ = 0 (5.72)

From the preceding two solutions are obtained: either _ = 0 or

(w' + uk') : O. In the first case; from equations (5.70) and (5.71)
there is obtained
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k' - cot

+_c - u

c6

P

: 0 (s.73)

This solution represents the usual adiabatic sound wave_ the phase

velocity of which is equal to Vf = i c - u; as should be the case for

a moving medium (if a system of coordinates is used in which the medium

is at rest; i.e.; u = O, the Vf = ± c), where c is the adiabatic

velocity of sound in the medium under consideration.

The second solution of equations (5.70)_ (5.71), and (S.72) reads

U

:0

c2
a : - --S (5.7_)

h

In this wave the velocity of the sound vibrations is equal to zero;

while changes occur in the entropy a and in the density $ of the

medium, this wave does not, however_ give rise to changes in pressure

in the medium. In fact, _ = c2_ + ha. From equation (5.74) it follows

that

= 0 (5.74 '

This conclusion is evident also from the fact that for the wave under

consideration the velocity _ = 0 so that the moving force must like-

wise be equal to zero. It is convenient to call this wave an entropy

wave. As is seen from equation (5.74), this wave is propagated with a

velocity equal to the velocity of motion of the medium u; that is_ it

is essentially simply carried along by the medium. Thus there are two

types of wave. At first glance it appears that the discussion could be

restricted to the usual isentropic waves (eq. (5.73)) and 3 with the

possession of two independent solutions_ the boundary conditions on the

shock wave could be satisfied.

It could; in fact_ easily be shown that from these solutions it is

not possible to construct a solution satisfying the initial data which

represent, for example; a restricted train of waves encountering the

shock wave. On the contrary_ in the problem presented herein; there

must be unavoidably recourse to the solution (5.74); that is, in the

shock wave there occur; as was already mentioned; irreversible
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processes, and the disturbances of this shock wave will give rise to
entropy fluctuations which will be propagated as a wave of the form of
equation (5.74).

All these results are obtained automatically if the conditions on
the surface of the discontinuity (see section 19) are used with the sub-
stitution of the differential equations of the hydrodynamics of a com-
pressible fluid. According to equations (3.93), (5.94), and (3.95),
these conditions are

UlPI = u2P2

2
PlU_ + Pl = P2U2 + P2

w1 + -if-; w2 + 2
(5.75)

where the subscripts I and 2 refer to the medium behind the shock wave

(i) and to the medium at rest ahead of the shock wave (2). The first

of these conditions expresses the law of the conservation of matter;

the second, of momentum; and the third, of energy (w is the heat

function). In the transmission of a sound wave 3 these conditions change

since all the magnitudes receive small increments (_j 5_ _3 and q). It

must also be taken into account that u = v - V and that the velocity

of motion of the shock wave V must likewise be varied. The change in

this velocity will be denoted by _. With the use of only linear approxi-

mation, the varied conditions which will be the boundary conditions for

the sound wave on the shock wave will be obtained from equation (5.75).

Thus, replacing in equation (5.75) u by _ - A, p by p + 5, and

p by p + _ yields

ulsl + - a)Pl : u2 2 + - n)P2 (5.vs)

(5.75,)

(since _ = c25 + h_) and finally from the third equation of equations

(5.74), it is borne in mind that 5w = c_/p + c2a/r (r is the gas

constant, p = rpT) there is obtained

2 2 2 2
Cl c I c2 c 2

Pl 51 + r gl + Ul (El - a) : _2 52 + r _2 + u2 (_2 - A)

(5.76")

_D

_D
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In the undisturbed medium (x > O, subscript 2) there is only the

incident wave. For this wave _2 = 0 and _2 = - c252/P2, where c2

is the adiabatic velocity of sound in the undisturbed medium. In the

medium behind t_e shock wave (x < 0j subscript I) the change in density
I T

is 51 I 51 + 52_ where 51 belongs to the transmitted isentropic sound

t / ITwave for which _i = - c151 P2 and 51 belongs to the entrop5 wave for

fT 2 IT t _

which _i : 0 and _i = - Cl_I/h = - Y/(Y - I) × rSl/P I. With the use

of these relations; _ and _ are eliminated from equations (5.76)_

(5.76'), and (S.76"); and after simple algebraic transformations there

are obtained

' 2_ " 2 5(Ul Cl)2 u[ + -- c2) 2- . 51 + ulo I (u2 - (5.77)

cI c
+__ ClUb 1 + 1 , 1 "

tP2 Pl 51 + [_2 Y - I p 52

c2 1 1
= -- + _ _ c2u Z + 52 (5.777)

i P2

From conditions (5.75) it is possible to express the magnitudes

characterizing the state of the gas behind the shock wave in terms of

the ratio of pressures pl/P2_ in the shock wave_ and ahead of it (see

section 19)_ there are then obtained

_l (r - l) + (r +l) P_P2

P2 Pl

(r + i) + (r - l)

Pl

2 z pl (r i) _+ (r + I)
c I = c 2 . -- (5.v8)

P2 Pl

(r + z) _ + (_ - l)

Ul - 2F
(r+ z) P_+ (r z)

P2

2
2 c2

u2- 2r (¥ + I) Pl ]--+(r-1
P2

(s.v9)
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where Ul, u2 < 03 and c_ = Tp?/p 2 = c8 is the square of the adiabatic

velocity of sound in the undisturbed medium. The medium ahead of the

shock wave will be assumed at rest so that u2 = v 2 - V = - V(v 2 = 0).

The magnitude 5 2 is given by the amplitude of the incident wave.

Hence, from equations (5.78) and (5.79) it is possible to find 5{ and

81 for the transmitted waves. With these values it is possible_ according

to equations (5.73) and (5.74), to obtain the remaining characteristics

of the transmitted waves. The pressure in the incident wave will be

denoted by _0 = c252 and the pressure in the transmitted acoustic wave_

I!

by _' = c215{ (since _I = 0). With the elimination of 51 from equa-

tions (5.77) and (5.77')_ the ratio _'/_0 = Cl°l/C o2 is obtained:

_T
/c 1 P2 T - 1 c__ !c2 Pl P2 c 2

t_

_0

Ul U\ 1 l 1 __ El 1

- i P2 ]" - i" Pl c12 P2 Pl

(5.8o)

This ratio for small shock waves approaches I_ as should be the case_

and is equal to

_' - I + 5 T + I Pl - P2.... + ... (5.81)
_0 8 y P2

(for (Pl - P2)/P2 << I). For large shock waves there is obtained

_' = i I Pl - P2 + ... (5.82)
-- -- •

(here (Pl - P2)/P2 >> I). In both cases, the sound pressure in the

transmitted wave increases in comparison with the pressure in the in-

cident wave. The pressure of the entropy wave_ as has already been

pointed out_ is equal to zero. Hence it is of less interest to find
TI

51 and _l then it is to find the changes in temperature which occur

because of the passage of the entropy wave. From the identity

p(p,T) = p(p,s) (5.85)
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t_

there is obtained

With the knowledge that (_P/_P)T = D/p = a2, where

velocity of sound and (_p/_T)p = p/T, and with the fact that for the

entropy wave (_p/_p)sSl + (_p/_S)pa I = O, the temperature fluctuations

produced by the sound wave are obtained in the form

81

eI = Tl(r l) -- (5.65)
01

a is the isothermal

and by the entropy wave
tl

,, 61
= -- (S .86)

81 - T I • p

From the preceding it is seen that the role of both waves will be com-
!

parable only in the case where 51 ,and 5" are of the same order. If
tl

from equations (5.77) and (5.77') 81/82 ils eliminated, 81/62 is obtained.

For small shock waves (Pl - Pz)/P2 << 1) there is obtained

,1

61 r - i Pl - P2

82 2y P2
+ ... (S.ST)

and since in this case 51/52 is near I; the entropy wave does not

play a marked role. Farther on its value increases, and with increase

in the shock wave 51/62 approaches

,,61 1 (r - I) +

52-Y y - 1 1/2
(5.87')

For the sound wave 5__/5 2 = n'/_0 " C2/C2" As a result of equations

(5.78) and (5.82)j for large shock waves this ratio is equal to

51 I I

62 Y

1+2-gC)

(5.87")
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Taus for (Pl - P2 )/p2 >> i the value of both waves in relation to the

fluctuations of the temperature of the medium behind the shock wave

becomes of the same order:

' = r_ r - 1 1 _-- (s.ss)

(m-_) 1/2i (r - l) + _s
" = -- (s.ss,)

From equation (5.82) it follows that for large shock waves the

sound pressure behind the shock wave is intensified. From this, of

course_ there is not to be drawn any final conclusion as to the pres-

sure on the sound receiver itself. It may be assumed that in the case

of supersonic velocity of motion of the receiver there will also occur

the intensification which was considered in section 293 based on the

theorem of Bernoulli. This side of the question is not possible to

analyze in greater detail because the supersonic flow about a body

presents_ as yet, a far from solved problem.

The very simple case considered herein leads to an explanation of

the absence of a reflected wave when a sound wave passes through a

shock wave, and there is no basis for thinking that this aspect of the

matter would be subject to essential modification for shock waves of

more complicated form (of the type illustrated in fig. $7).

A similar remark may be made on the existence of two waves behind

the shock wave: the sound and entropy waves. With regard to the quanti-

tative relations, the fact that for small shock waves the transmitted

wave is almost undisturbed by the shock wave should likewise not de-

pend on the shape of the shock wave and probably has a more general

significance than follows directly from the special case considered.

_o

_o

Translated by S. Reiss

National Advisory Committee

for Aeronautics
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